Bulk update nvpro-samples 11/20/23

5c72ddfc0522eb6604828e74886cf39be646ba78
This commit is contained in:
Mathias Heyer 2023-11-20 13:54:44 -08:00
parent debd0d5e33
commit 0c73e8ec1b
96 changed files with 927 additions and 922 deletions

View file

@ -92,7 +92,7 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
for(uint32_t i = 0; i < nbSpheres; i++)
{
Sphere s;
s.center = nvmath::vec3f(xzd(gen), yd(gen), xzd(gen));
s.center = glm::vec3(xzd(gen), yd(gen), xzd(gen));
s.radius = radd(gen);
m_spheres[i] = std::move(s);
}
@ -103,18 +103,18 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
for(const auto& s : m_spheres)
{
Aabb aabb;
aabb.minimum = s.center - nvmath::vec3f(s.radius);
aabb.maximum = s.center + nvmath::vec3f(s.radius);
aabb.minimum = s.center - glm::vec3(s.radius);
aabb.maximum = s.center + glm::vec3(s.radius);
aabbs.emplace_back(aabb);
}
// Creating two materials
MaterialObj mat;
mat.diffuse = nvmath::vec3f(0, 1, 1);
mat.diffuse = glm::vec3(0, 1, 1);
std::vector<MaterialObj> materials;
std::vector<int> matIdx(nbSpheres);
materials.emplace_back(mat);
mat.diffuse = nvmath::vec3f(1, 1, 0);
mat.diffuse = glm::vec3(1, 1, 0);
materials.emplace_back(mat);
// Assign a material to each sphere
@ -214,7 +214,7 @@ In `main.cpp`, where we are loading the OBJ model, we can replace it with
The scene will be large, better to move the camera out
~~~~ C++
CameraManip.setLookat(nvmath::vec3f(20, 20, 20), nvmath::vec3f(0, 1, 0), nvmath::vec3f(0, 1, 0));
CameraManip.setLookat(glm::vec3(20, 20, 20), glm::vec3(0, 1, 0), glm::vec3(0, 1, 0));
~~~~
## Acceleration Structures
@ -272,7 +272,7 @@ Just after the loop and before building the TLAS, we need to add the following.
// Add the blas containing all implicit objects
{
VkAccelerationStructureInstanceKHR rayInst{};
rayInst.transform = nvvk::toTransformMatrixKHR(nvmath::mat4f(1)); // Position of the instance (identity)
rayInst.transform = nvvk::toTransformMatrixKHR(glm::mat4(1)); // Position of the instance (identity)
rayInst.instanceCustomIndex = nbObj; // nbObj == last object == implicit
rayInst.accelerationStructureReference = m_rtBuilder.getBlasDeviceAddress(static_cast<uint32_t>(m_objModel.size()));
rayInst.instanceShaderBindingTableRecordOffset = 1; // We will use the same hit group for all objects

View file

@ -62,12 +62,12 @@ void HelloVulkan::updateUniformBuffer(const VkCommandBuffer& cmdBuf)
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
GlobalUniforms hostUBO = {};
const auto& view = CameraManip.getMatrix();
const auto& proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
// proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
glm::mat4 proj = glm::perspectiveRH_ZO(glm::radians(CameraManip.getFov()), aspectRatio, 0.1f, 1000.0f);
proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
hostUBO.viewProj = proj * view;
hostUBO.viewInverse = nvmath::invert(view);
hostUBO.projInverse = nvmath::invert(proj);
hostUBO.viewInverse = glm::inverse(view);
hostUBO.projInverse = glm::inverse(proj);
// UBO on the device, and what stages access it.
VkBuffer deviceUBO = m_bGlobals.buffer;
@ -192,7 +192,7 @@ void HelloVulkan::createGraphicsPipeline()
//--------------------------------------------------------------------------------------------------
// Loading the OBJ file and setting up all buffers
//
void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform)
void HelloVulkan::loadModel(const std::string& filename, glm::mat4 transform)
{
LOGI("Loading File: %s \n", filename.c_str());
ObjLoader loader;
@ -201,9 +201,9 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
// Converting from Srgb to linear
for(auto& m : loader.m_materials)
{
m.ambient = nvmath::pow(m.ambient, 2.2f);
m.diffuse = nvmath::pow(m.diffuse, 2.2f);
m.specular = nvmath::pow(m.specular, 2.2f);
m.ambient = glm::pow(m.ambient, glm::vec3(2.2f));
m.diffuse = glm::pow(m.diffuse, glm::vec3(2.2f));
m.specular = glm::pow(m.specular, glm::vec3(2.2f));
}
ObjModel model;
@ -698,7 +698,7 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
for(uint32_t i = 0; i < nbSpheres; i++)
{
Sphere s;
s.center = nvmath::vec3f(xzd(gen), yd(gen), xzd(gen));
s.center = glm::vec3(xzd(gen), yd(gen), xzd(gen));
s.radius = radd(gen);
m_spheres[i] = std::move(s);
}
@ -709,18 +709,18 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
for(const auto& s : m_spheres)
{
Aabb aabb;
aabb.minimum = s.center - nvmath::vec3f(s.radius);
aabb.maximum = s.center + nvmath::vec3f(s.radius);
aabb.minimum = s.center - glm::vec3(s.radius);
aabb.maximum = s.center + glm::vec3(s.radius);
aabbs.emplace_back(aabb);
}
// Creating two materials
MaterialObj mat;
mat.diffuse = nvmath::vec3f(0, 1, 1);
mat.diffuse = glm::vec3(0, 1, 1);
std::vector<MaterialObj> materials;
std::vector<int> matIdx(nbSpheres);
materials.emplace_back(mat);
mat.diffuse = nvmath::vec3f(1, 1, 0);
mat.diffuse = glm::vec3(1, 1, 0);
materials.emplace_back(mat);
// Assign a material to each sphere
@ -735,8 +735,8 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
auto cmdBuf = genCmdBuf.createCommandBuffer();
m_spheresBuffer = m_alloc.createBuffer(cmdBuf, m_spheres, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
m_spheresAabbBuffer = m_alloc.createBuffer(cmdBuf, aabbs,
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
| VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR);
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
| VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR);
m_spheresMatIndexBuffer =
m_alloc.createBuffer(cmdBuf, matIdx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
m_spheresMatColorBuffer =
@ -812,7 +812,7 @@ void HelloVulkan::createTopLevelAS()
// Add the blas containing all implicit objects
{
VkAccelerationStructureInstanceKHR rayInst{};
rayInst.transform = nvvk::toTransformMatrixKHR(nvmath::mat4f(1)); // (identity)
rayInst.transform = nvvk::toTransformMatrixKHR(glm::mat4(1)); // (identity)
rayInst.instanceCustomIndex = nbObj; // nbObj == last object == implicit
rayInst.accelerationStructureReference = m_rtBuilder.getBlasDeviceAddress(static_cast<uint32_t>(m_objModel.size()));
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
@ -846,7 +846,7 @@ void HelloVulkan::createRtDescriptorSet()
vkAllocateDescriptorSets(m_device, &allocateInfo, &m_rtDescSet);
VkAccelerationStructureKHR tlas = m_rtBuilder.getAccelerationStructure();
VkAccelerationStructureKHR tlas = m_rtBuilder.getAccelerationStructure();
VkWriteDescriptorSetAccelerationStructureKHR descASInfo{VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR};
descASInfo.accelerationStructureCount = 1;
descASInfo.pAccelerationStructures = &tlas;
@ -1025,9 +1025,9 @@ void HelloVulkan::createRtShaderBindingTable()
// Allocate a buffer for storing the SBT.
VkDeviceSize sbtSize = m_rgenRegion.size + m_missRegion.size + m_hitRegion.size + m_callRegion.size;
m_rtSBTBuffer = m_alloc.createBuffer(sbtSize,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
| VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
| VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
m_debug.setObjectName(m_rtSBTBuffer.buffer, std::string("SBT")); // Give it a debug name for NSight.
// Find the SBT addresses of each group
@ -1069,7 +1069,7 @@ void HelloVulkan::createRtShaderBindingTable()
//--------------------------------------------------------------------------------------------------
// Ray Tracing the scene
//
void HelloVulkan::raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& clearColor)
void HelloVulkan::raytrace(const VkCommandBuffer& cmdBuf, const glm::vec4& clearColor)
{
m_debug.beginLabel(cmdBuf, "Ray trace");
// Initializing push constant values

View file

@ -42,7 +42,7 @@ public:
void setup(const VkInstance& instance, const VkDevice& device, const VkPhysicalDevice& physicalDevice, uint32_t queueFamily) override;
void createDescriptorSetLayout();
void createGraphicsPipeline();
void loadModel(const std::string& filename, nvmath::mat4f transform = nvmath::mat4f(1));
void loadModel(const std::string& filename, glm::mat4 transform = glm::mat4(1));
void updateDescriptorSet();
void createUniformBuffer();
void createObjDescriptionBuffer();
@ -65,18 +65,18 @@ public:
struct ObjInstance
{
nvmath::mat4f transform; // Matrix of the instance
uint32_t objIndex{0}; // Model index reference
glm::mat4 transform; // Matrix of the instance
uint32_t objIndex{0}; // Model index reference
};
// Information pushed at each draw call
PushConstantRaster m_pcRaster{
{1}, // Identity matrix
{10.f, 55.f, 8.f}, // light position
0, // instance Id
1000.f, // light intensity
0 // light type
{1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}, // Identity matrix
{10.f, 55.f, 8.f}, // light position
0, // instance Id
1000.f, // light intensity
0 // light type
};
// Array of objects and instances in the scene
@ -132,15 +132,15 @@ public:
void updateRtDescriptorSet();
void createRtPipeline();
void createRtShaderBindingTable();
void raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& clearColor);
void raytrace(const VkCommandBuffer& cmdBuf, const glm::vec4& clearColor);
VkPhysicalDeviceRayTracingPipelinePropertiesKHR m_rtProperties{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR};
nvvk::RaytracingBuilderKHR m_rtBuilder;
nvvk::DescriptorSetBindings m_rtDescSetLayoutBind;
VkDescriptorPool m_rtDescPool;
VkDescriptorSetLayout m_rtDescSetLayout;
VkDescriptorSet m_rtDescSet;
nvvk::RaytracingBuilderKHR m_rtBuilder;
nvvk::DescriptorSetBindings m_rtDescSetLayoutBind;
VkDescriptorPool m_rtDescPool;
VkDescriptorSetLayout m_rtDescSetLayout;
VkDescriptorSet m_rtDescSet;
std::vector<VkRayTracingShaderGroupCreateInfoKHR> m_rtShaderGroups;
VkPipelineLayout m_rtPipelineLayout;
VkPipeline m_rtPipeline;

View file

@ -94,7 +94,7 @@ int main(int argc, char** argv)
// Setup camera
CameraManip.setWindowSize(SAMPLE_WIDTH, SAMPLE_HEIGHT);
CameraManip.setLookat(nvmath::vec3f(20, 20, 20), nvmath::vec3f(0, 1, 0), nvmath::vec3f(0, 1, 0));
CameraManip.setLookat(glm::vec3(20, 20, 20), glm::vec3(0, 1, 0), glm::vec3(0, 1, 0));
// Setup Vulkan
if(!glfwVulkanSupported())
@ -186,8 +186,8 @@ int main(int argc, char** argv)
helloVk.updatePostDescriptorSet();
nvmath::vec4f clearColor = nvmath::vec4f(1, 1, 1, 1.00f);
bool useRaytracer = true;
glm::vec4 clearColor = glm::vec4(1, 1, 1, 1.00f);
bool useRaytracer = true;
helloVk.setupGlfwCallbacks(window);

View file

@ -22,12 +22,12 @@
#define COMMON_HOST_DEVICE
#ifdef __cplusplus
#include "nvmath/nvmath.h"
#include <glm/glm.hpp>
// GLSL Type
using vec2 = nvmath::vec2f;
using vec3 = nvmath::vec3f;
using vec4 = nvmath::vec4f;
using mat4 = nvmath::mat4f;
using vec2 = glm::vec2;
using vec3 = glm::vec3;
using vec4 = glm::vec4;
using mat4 = glm::mat4;
using uint = unsigned int;
#endif

View file

@ -69,7 +69,8 @@ void main()
vec3 absN = abs(worldNrm);
float maxC = max(max(absN.x, absN.y), absN.z);
worldNrm = (maxC == absN.x) ? vec3(sign(worldNrm.x), 0, 0) :
(maxC == absN.y) ? vec3(0, sign(worldNrm.y), 0) : vec3(0, 0, sign(worldNrm.z));
(maxC == absN.y) ? vec3(0, sign(worldNrm.y), 0) :
vec3(0, 0, sign(worldNrm.z));
}
// Vector toward the light