New example, loading glTF scenes instead of individual OBJ. Showing simple path tracing and how to make it 3x faster.
This commit is contained in:
parent
813f392fdf
commit
2eb9b6e522
25 changed files with 4410 additions and 2 deletions
162
ray_tracing_gltf/shaders/pathtrace.rchit
Normal file
162
ray_tracing_gltf/shaders/pathtrace.rchit
Normal file
|
|
@ -0,0 +1,162 @@
|
|||
#version 460
|
||||
#extension GL_EXT_ray_tracing : require
|
||||
#extension GL_EXT_nonuniform_qualifier : enable
|
||||
#extension GL_EXT_scalar_block_layout : enable
|
||||
#extension GL_GOOGLE_include_directive : enable
|
||||
|
||||
#include "binding.glsl"
|
||||
#include "gltf.glsl"
|
||||
#include "raycommon.glsl"
|
||||
#include "sampling.glsl"
|
||||
|
||||
|
||||
hitAttributeEXT vec2 attribs;
|
||||
|
||||
// clang-format off
|
||||
layout(location = 0) rayPayloadInEXT hitPayload prd;
|
||||
layout(location = 1) rayPayloadEXT bool isShadowed;
|
||||
|
||||
layout(set = 0, binding = 0 ) uniform accelerationStructureEXT topLevelAS;
|
||||
layout(set = 0, binding = 2) readonly buffer _InstanceInfo {PrimMeshInfo primInfo[];};
|
||||
|
||||
layout(set = 1, binding = B_VERTICES) readonly buffer _VertexBuf {float vertices[];};
|
||||
layout(set = 1, binding = B_INDICES) readonly buffer _Indices {uint indices[];};
|
||||
layout(set = 1, binding = B_NORMALS) readonly buffer _NormalBuf {float normals[];};
|
||||
layout(set = 1, binding = B_TEXCOORDS) readonly buffer _TexCoordBuf {float texcoord0[];};
|
||||
layout(set = 1, binding = B_MATERIALS) readonly buffer _MaterialBuffer {GltfMaterial materials[];};
|
||||
layout(set = 1, binding = B_TEXTURES) uniform sampler2D texturesMap[]; // all textures
|
||||
|
||||
|
||||
// clang-format on
|
||||
|
||||
layout(push_constant) uniform Constants
|
||||
{
|
||||
vec4 clearColor;
|
||||
vec3 lightPosition;
|
||||
float lightIntensity;
|
||||
int lightType;
|
||||
}
|
||||
pushC;
|
||||
|
||||
// Return the vertex position
|
||||
vec3 getVertex(uint index)
|
||||
{
|
||||
vec3 vp;
|
||||
vp.x = vertices[3 * index + 0];
|
||||
vp.y = vertices[3 * index + 1];
|
||||
vp.z = vertices[3 * index + 2];
|
||||
return vp;
|
||||
}
|
||||
|
||||
vec3 getNormal(uint index)
|
||||
{
|
||||
vec3 vp;
|
||||
vp.x = normals[3 * index + 0];
|
||||
vp.y = normals[3 * index + 1];
|
||||
vp.z = normals[3 * index + 2];
|
||||
return vp;
|
||||
}
|
||||
|
||||
vec2 getTexCoord(uint index)
|
||||
{
|
||||
vec2 vp;
|
||||
vp.x = texcoord0[2 * index + 0];
|
||||
vp.y = texcoord0[2 * index + 1];
|
||||
return vp;
|
||||
}
|
||||
|
||||
|
||||
void main()
|
||||
{
|
||||
// Retrieve the Primitive mesh buffer information
|
||||
PrimMeshInfo pinfo = primInfo[gl_InstanceCustomIndexEXT];
|
||||
|
||||
// Getting the 'first index' for this mesh (offset of the mesh + offset of the triangle)
|
||||
uint indexOffset = pinfo.indexOffset + (3 * gl_PrimitiveID);
|
||||
uint vertexOffset = pinfo.vertexOffset; // Vertex offset as defined in glTF
|
||||
uint matIndex = max(0, pinfo.materialIndex); // material of primitive mesh
|
||||
|
||||
// Getting the 3 indices of the triangle (local)
|
||||
ivec3 triangleIndex = ivec3(indices[nonuniformEXT(indexOffset + 0)], //
|
||||
indices[nonuniformEXT(indexOffset + 1)], //
|
||||
indices[nonuniformEXT(indexOffset + 2)]);
|
||||
triangleIndex += ivec3(vertexOffset); // (global)
|
||||
|
||||
const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y);
|
||||
|
||||
// Vertex of the triangle
|
||||
const vec3 pos0 = getVertex(triangleIndex.x);
|
||||
const vec3 pos1 = getVertex(triangleIndex.y);
|
||||
const vec3 pos2 = getVertex(triangleIndex.z);
|
||||
const vec3 position = pos0 * barycentrics.x + pos1 * barycentrics.y + pos2 * barycentrics.z;
|
||||
const vec3 world_position = vec3(gl_ObjectToWorldEXT * vec4(position, 1.0));
|
||||
|
||||
// Normal
|
||||
const vec3 nrm0 = getNormal(triangleIndex.x);
|
||||
const vec3 nrm1 = getNormal(triangleIndex.y);
|
||||
const vec3 nrm2 = getNormal(triangleIndex.z);
|
||||
vec3 normal = normalize(nrm0 * barycentrics.x + nrm1 * barycentrics.y + nrm2 * barycentrics.z);
|
||||
const vec3 world_normal = normalize(vec3(normal * gl_WorldToObjectEXT));
|
||||
const vec3 geom_normal = normalize(cross(pos1 - pos0, pos2 - pos0));
|
||||
|
||||
// TexCoord
|
||||
const vec2 uv0 = getTexCoord(triangleIndex.x);
|
||||
const vec2 uv1 = getTexCoord(triangleIndex.y);
|
||||
const vec2 uv2 = getTexCoord(triangleIndex.z);
|
||||
const vec2 texcoord0 = uv0 * barycentrics.x + uv1 * barycentrics.y + uv2 * barycentrics.z;
|
||||
|
||||
// https://en.wikipedia.org/wiki/Path_tracing
|
||||
// Material of the object
|
||||
GltfMaterial mat = materials[nonuniformEXT(matIndex)];
|
||||
vec3 emittance = mat.emissiveFactor;
|
||||
|
||||
// Pick a random direction from here and keep going.
|
||||
vec3 tangent, bitangent;
|
||||
createCoordinateSystem(world_normal, tangent, bitangent);
|
||||
vec3 rayOrigin = world_position;
|
||||
vec3 rayDirection = samplingHemisphere(prd.seed, tangent, bitangent, world_normal);
|
||||
|
||||
// Probability of the newRay (cosine distributed)
|
||||
const float p = 1 / M_PI;
|
||||
|
||||
// Compute the BRDF for this ray (assuming Lambertian reflection)
|
||||
float cos_theta = dot(rayDirection, world_normal);
|
||||
vec3 albedo = mat.pbrBaseColorFactor.xyz;
|
||||
if(mat.pbrBaseColorTexture > -1)
|
||||
{
|
||||
uint txtId = mat.pbrBaseColorTexture;
|
||||
albedo *= texture(texturesMap[nonuniformEXT(txtId)], texcoord0).xyz;
|
||||
}
|
||||
vec3 BRDF = albedo / M_PI;
|
||||
|
||||
prd.rayOrigin = rayOrigin;
|
||||
prd.rayDirection = rayDirection;
|
||||
prd.hitValue = emittance;
|
||||
prd.weight = BRDF * cos_theta / p;
|
||||
return;
|
||||
|
||||
// Recursively trace reflected light sources.
|
||||
if(prd.depth < 10)
|
||||
{
|
||||
prd.depth++;
|
||||
float tMin = 0.001;
|
||||
float tMax = 100000000.0;
|
||||
uint flags = gl_RayFlagsOpaqueEXT;
|
||||
traceRayEXT(topLevelAS, // acceleration structure
|
||||
flags, // rayFlags
|
||||
0xFF, // cullMask
|
||||
0, // sbtRecordOffset
|
||||
0, // sbtRecordStride
|
||||
0, // missIndex
|
||||
rayOrigin, // ray origin
|
||||
tMin, // ray min range
|
||||
rayDirection, // ray direction
|
||||
tMax, // ray max range
|
||||
0 // payload (location = 0)
|
||||
);
|
||||
}
|
||||
vec3 incoming = prd.hitValue;
|
||||
|
||||
// Apply the Rendering Equation here.
|
||||
prd.hitValue = emittance + (BRDF * incoming * cos_theta / p);
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue