New example, loading glTF scenes instead of individual OBJ. Showing simple path tracing and how to make it 3x faster.
This commit is contained in:
parent
813f392fdf
commit
2eb9b6e522
25 changed files with 4410 additions and 2 deletions
64
ray_tracing_gltf/shaders/sampling.glsl
Normal file
64
ray_tracing_gltf/shaders/sampling.glsl
Normal file
|
|
@ -0,0 +1,64 @@
|
|||
// Generate a random unsigned int from two unsigned int values, using 16 pairs
|
||||
// of rounds of the Tiny Encryption Algorithm. See Zafar, Olano, and Curtis,
|
||||
// "GPU Random Numbers via the Tiny Encryption Algorithm"
|
||||
uint tea(uint val0, uint val1)
|
||||
{
|
||||
uint v0 = val0;
|
||||
uint v1 = val1;
|
||||
uint s0 = 0;
|
||||
|
||||
for(uint n = 0; n < 16; n++)
|
||||
{
|
||||
s0 += 0x9e3779b9;
|
||||
v0 += ((v1 << 4) + 0xa341316c) ^ (v1 + s0) ^ ((v1 >> 5) + 0xc8013ea4);
|
||||
v1 += ((v0 << 4) + 0xad90777d) ^ (v0 + s0) ^ ((v0 >> 5) + 0x7e95761e);
|
||||
}
|
||||
|
||||
return v0;
|
||||
}
|
||||
|
||||
// Generate a random unsigned int in [0, 2^24) given the previous RNG state
|
||||
// using the Numerical Recipes linear congruential generator
|
||||
uint lcg(inout uint prev)
|
||||
{
|
||||
uint LCG_A = 1664525u;
|
||||
uint LCG_C = 1013904223u;
|
||||
prev = (LCG_A * prev + LCG_C);
|
||||
return prev & 0x00FFFFFF;
|
||||
}
|
||||
|
||||
// Generate a random float in [0, 1) given the previous RNG state
|
||||
float rnd(inout uint prev)
|
||||
{
|
||||
return (float(lcg(prev)) / float(0x01000000));
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------------------------------------------------------------------------
|
||||
// Sampling
|
||||
//-------------------------------------------------------------------------------------------------
|
||||
|
||||
// Randomly sampling around +Z
|
||||
vec3 samplingHemisphere(inout uint seed, in vec3 x, in vec3 y, in vec3 z)
|
||||
{
|
||||
#define M_PI 3.141592
|
||||
|
||||
float r1 = rnd(seed);
|
||||
float r2 = rnd(seed);
|
||||
float sq = sqrt(1.0 - r2);
|
||||
|
||||
vec3 direction = vec3(cos(2 * M_PI * r1) * sq, sin(2 * M_PI * r1) * sq, sqrt(r2));
|
||||
direction = direction.x * x + direction.y * y + direction.z * z;
|
||||
|
||||
return direction;
|
||||
}
|
||||
|
||||
// Return the tangent and binormal from the incoming normal
|
||||
void createCoordinateSystem(in vec3 N, out vec3 Nt, out vec3 Nb)
|
||||
{
|
||||
if(abs(N.x) > abs(N.y))
|
||||
Nt = vec3(N.z, 0, -N.x) / sqrt(N.x * N.x + N.z * N.z);
|
||||
else
|
||||
Nt = vec3(0, -N.z, N.y) / sqrt(N.y * N.y + N.z * N.z);
|
||||
Nb = cross(N, Nt);
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue