New documentation
This commit is contained in:
parent
e1dff2a4e7
commit
3465e08c77
31 changed files with 2825 additions and 55 deletions
|
|
@ -1,5 +1,172 @@
|
|||
# NVIDIA Vulkan Ray Tracing Tutorial
|
||||
# Callable Shaders - Tutorial
|
||||
|
||||
[Start the tutorial of this project](https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR/vkrt_tuto_callable.md.html)
|
||||

|
||||
<small>Author: [Martin-Karl Lefrançois](https://devblogs.nvidia.com/author/mlefrancois/)</small>
|
||||
|
||||

|
||||
## Tutorial ([Setup](../docs/setup.md))
|
||||
|
||||
This is an extension of the Vulkan ray tracing [tutorial](https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR).
|
||||
|
||||
|
||||
Ray tracing allow to use [callable shaders](https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/chap8.html#shaders-callable)
|
||||
in ray-generation, closest-hit, miss or another callable shader stage.
|
||||
It is similar to an indirect function call, whitout having to link those shaders with the executable program.
|
||||
|
||||
(insert setup.md.html here)
|
||||
|
||||
|
||||
## Data Storage
|
||||
|
||||
Data can only access data passed in to the callable from parent stage. There will be only one structure pass at a time and should be declared like for payload.
|
||||
|
||||
In the parent stage, using the `callableDataEXT` storage qualifier, it could be declared like:
|
||||
|
||||
~~~~ C++
|
||||
layout(location = 0) callableDataEXT rayLight cLight;
|
||||
~~~~
|
||||
|
||||
where `rayLight` struct is defined in a shared file.
|
||||
|
||||
~~~~ C++
|
||||
struct rayLight
|
||||
{
|
||||
vec3 inHitPosition;
|
||||
float outLightDistance;
|
||||
vec3 outLightDir;
|
||||
float outIntensity;
|
||||
};
|
||||
~~~~
|
||||
|
||||
And in the incoming callable shader, you must use the `callableDataInEXT` storage qualifier.
|
||||
|
||||
~~~~ C++
|
||||
layout(location = 0) callableDataInEXT rayLight cLight;
|
||||
~~~~
|
||||
|
||||
## Execution
|
||||
|
||||
To execute one of the callable shader, the parent stage need to call `executeCallableEXT`.
|
||||
|
||||
The first parameter is the SBT record index, the second one correspond to the 'location' index.
|
||||
|
||||
Example of how it is called.
|
||||
|
||||
~~~~ C++
|
||||
executeCallableEXT(pushC.lightType, 0);
|
||||
~~~~
|
||||
|
||||
|
||||
## Adding Callable Shaders to the SBT
|
||||
|
||||
### Create Shader Modules
|
||||
|
||||
In `HelloVulkan::createRtPipeline()`, immediately after adding the closest-hit shader, we will add
|
||||
3 callable shaders, for each type of light.
|
||||
|
||||
~~~~ C++
|
||||
// Callable shaders
|
||||
vk::RayTracingShaderGroupCreateInfoKHR callGroup{vk::RayTracingShaderGroupTypeKHR::eGeneral,
|
||||
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
|
||||
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
|
||||
|
||||
vk::ShaderModule call0 =
|
||||
nvvk::createShaderModule(m_device,
|
||||
nvh::loadFile("shaders/light_point.rcall.spv", true, paths));
|
||||
vk::ShaderModule call1 =
|
||||
nvvk::createShaderModule(m_device,
|
||||
nvh::loadFile("shaders/light_spot.rcall.spv", true, paths));
|
||||
vk::ShaderModule call2 =
|
||||
nvvk::createShaderModule(m_device, nvh::loadFile("shaders/light_inf.rcall.spv", true, paths));
|
||||
|
||||
stages.push_back({{}, vk::ShaderStageFlagBits::eCallableKHR, call0, "main"});
|
||||
callGroup.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
|
||||
m_rtShaderGroups.push_back(callGroup);
|
||||
stages.push_back({{}, vk::ShaderStageFlagBits::eCallableKHR, call1, "main"});
|
||||
callGroup.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
|
||||
m_rtShaderGroups.push_back(callGroup);
|
||||
stages.push_back({{}, vk::ShaderStageFlagBits::eCallableKHR, call2, "main"});
|
||||
callGroup.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
|
||||
m_rtShaderGroups.push_back(callGroup);
|
||||
~~~~
|
||||
|
||||
And at the end of the function, delete the shaders.
|
||||
|
||||
~~~~ C++
|
||||
m_device.destroy(call0);
|
||||
m_device.destroy(call1);
|
||||
m_device.destroy(call2);
|
||||
~~~~
|
||||
|
||||
#### Shaders
|
||||
|
||||
Here are the source of all shaders
|
||||
|
||||
* [light_point.rcall](https://github.com/nvpro-samples/vk_raytracing_tutorial_KHR/blob/master/ray_tracing_callable/shaders/light_point.rcall)
|
||||
* [light_spot.rcall](https://github.com/nvpro-samples/vk_raytracing_tutorial_KHR/blob/master/ray_tracing_callable/shaders/light_spot.rcall)
|
||||
* [light_inf.rcall](https://github.com/nvpro-samples/vk_raytracing_tutorial_KHR/blob/master/ray_tracing_callable/shaders/light_inf.rcall)
|
||||
|
||||
|
||||
### Passing Callable to traceRaysKHR
|
||||
|
||||
In `HelloVulkan::raytrace()`, we have to tell where the callable shader starts. Since they were added after the hit shader, we have in the SBT the following.
|
||||
|
||||

|
||||
|
||||
|
||||
Therefore, the callable starts at `4 * progSize`
|
||||
|
||||
~~~~ C++
|
||||
vk::DeviceSize callableGroupOffset = 4u * progSize; // Jump over the previous shaders
|
||||
vk::DeviceSize callableGroupStride = progSize;
|
||||
~~~~
|
||||
|
||||
Then we can call `traceRaysKHR`
|
||||
|
||||
~~~~ C++
|
||||
const vk::StridedBufferRegionKHR callableShaderBindingTable = {
|
||||
m_rtSBTBuffer.buffer, callableGroupOffset, progSize, sbtSize};
|
||||
|
||||
cmdBuf.traceRaysKHR(&raygenShaderBindingTable, &missShaderBindingTable, &hitShaderBindingTable,
|
||||
&callableShaderBindingTable, //
|
||||
m_size.width, m_size.height, 1); //
|
||||
~~~~
|
||||
|
||||
## Calling the Callable Shaders
|
||||
|
||||
In the closest-hit shader, instead of having a if-else case, we can now call directly the right shader base on the type of light.
|
||||
|
||||
~~~~ C++
|
||||
cLight.inHitPosition = worldPos;
|
||||
//#define DONT_USE_CALLABLE
|
||||
#if defined(DONT_USE_CALLABLE)
|
||||
// Point light
|
||||
if(pushC.lightType == 0)
|
||||
{
|
||||
vec3 lDir = pushC.lightPosition - cLight.inHitPosition;
|
||||
float lightDistance = length(lDir);
|
||||
cLight.outIntensity = pushC.lightIntensity / (lightDistance * lightDistance);
|
||||
cLight.outLightDir = normalize(lDir);
|
||||
cLight.outLightDistance = lightDistance;
|
||||
}
|
||||
else if(pushC.lightType == 1)
|
||||
{
|
||||
vec3 lDir = pushC.lightPosition - cLight.inHitPosition;
|
||||
cLight.outLightDistance = length(lDir);
|
||||
cLight.outIntensity =
|
||||
pushC.lightIntensity / (cLight.outLightDistance * cLight.outLightDistance);
|
||||
cLight.outLightDir = normalize(lDir);
|
||||
float theta = dot(cLight.outLightDir, normalize(-pushC.lightDirection));
|
||||
float epsilon = pushC.lightSpotCutoff - pushC.lightSpotOuterCutoff;
|
||||
float spotIntensity = clamp((theta - pushC.lightSpotOuterCutoff) / epsilon, 0.0, 1.0);
|
||||
cLight.outIntensity *= spotIntensity;
|
||||
}
|
||||
else // Directional light
|
||||
{
|
||||
cLight.outLightDir = normalize(-pushC.lightDirection);
|
||||
cLight.outIntensity = 1.0;
|
||||
cLight.outLightDistance = 10000000;
|
||||
}
|
||||
#else
|
||||
executeCallableEXT(pushC.lightType, 0);
|
||||
#endif
|
||||
~~~~
|
||||
|
|
|
|||
BIN
ray_tracing_callable/images/callable.png
Normal file
BIN
ray_tracing_callable/images/callable.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 226 KiB |
BIN
ray_tracing_callable/images/sbt.png
Normal file
BIN
ray_tracing_callable/images/sbt.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 3.8 KiB |
Loading…
Add table
Add a link
Reference in a new issue