framework update 4/29/2020

This commit is contained in:
Christoph Kubisch 2020-04-29 13:59:03 +02:00
parent 21fc655237
commit 60103dd1ce
62 changed files with 2931 additions and 2743 deletions

View file

@ -36,13 +36,13 @@ extern std::vector<std::string> defaultSearchPaths;
#include "hello_vulkan.h"
#include "nvh//cameramanipulator.hpp"
#include "nvvkpp/descriptorsets_vkpp.hpp"
#include "nvvkpp/pipeline_vkpp.hpp"
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/pipeline_vk.hpp"
#include "nvh/fileoperations.hpp"
#include "nvvkpp/commands_vkpp.hpp"
#include "nvvkpp/renderpass_vkpp.hpp"
#include "nvvkpp/utilities_vkpp.hpp"
#include "nvvk/commands_vk.hpp"
#include "nvvk/renderpasses_vk.hpp"
// Holding the camera matrices
struct CameraMatrices
@ -58,11 +58,12 @@ struct CameraMatrices
// Keep the handle on the device
// Initialize the tool to do all our allocations: buffers, images
//
void HelloVulkan::setup(const vk::Device& device,
void HelloVulkan::setup(const vk::Instance& instance,
const vk::Device& device,
const vk::PhysicalDevice& physicalDevice,
uint32_t queueFamily)
{
AppBase::setup(device, physicalDevice, queueFamily);
AppBase::setup(instance, device, physicalDevice, queueFamily);
m_alloc.init(device, physicalDevice);
m_debug.setup(m_device);
}
@ -99,33 +100,33 @@ void HelloVulkan::createDescriptorSetLayout()
uint32_t nbObj = static_cast<uint32_t>(m_objModel.size());
// Camera matrices (binding = 0)
m_descSetLayoutBind.emplace_back(
m_descSetLayoutBind.addBinding(
vkDS(0, vkDT::eUniformBuffer, 1, vkSS::eVertex | vkSS::eRaygenKHR));
// Materials (binding = 1)
m_descSetLayoutBind.emplace_back(
m_descSetLayoutBind.addBinding(
vkDS(1, vkDT::eStorageBuffer, nbObj, vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR));
// Scene description (binding = 2)
m_descSetLayoutBind.emplace_back( //
m_descSetLayoutBind.addBinding( //
vkDS(2, vkDT::eStorageBuffer, 1, vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR));
// Textures (binding = 3)
m_descSetLayoutBind.emplace_back(
m_descSetLayoutBind.addBinding(
vkDS(3, vkDT::eCombinedImageSampler, nbTxt, vkSS::eFragment | vkSS::eClosestHitKHR));
// Materials (binding = 4)
m_descSetLayoutBind.emplace_back(
m_descSetLayoutBind.addBinding(
vkDS(4, vkDT::eStorageBuffer, nbObj, vkSS::eFragment | vkSS::eClosestHitKHR));
// Storing vertices (binding = 5)
m_descSetLayoutBind.emplace_back( //
m_descSetLayoutBind.addBinding( //
vkDS(5, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR));
// Storing indices (binding = 6)
m_descSetLayoutBind.emplace_back( //
m_descSetLayoutBind.addBinding( //
vkDS(6, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR));
// The top level acceleration structure
m_descSetLayoutBind.emplace_back( //
m_descSetLayoutBind.addBinding( //
vkDS(7, vkDT::eAccelerationStructureKHR, 1, vkSS::eFragment));
m_descSetLayout = nvvkpp::util::createDescriptorSetLayout(m_device, m_descSetLayoutBind);
m_descPool = nvvkpp::util::createDescriptorPool(m_device, m_descSetLayoutBind, 1);
m_descSet = nvvkpp::util::createDescriptorSet(m_device, m_descPool, m_descSetLayout);
m_descSetLayout = m_descSetLayoutBind.createLayout(m_device);
m_descPool = m_descSetLayoutBind.createPool(m_device, 1);
m_descSet = nvvk::allocateDescriptorSet(m_device, m_descPool, m_descSetLayout);
}
//--------------------------------------------------------------------------------------------------
@ -137,9 +138,9 @@ void HelloVulkan::updateDescriptorSet()
// Camera matrices and scene description
vk::DescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[0], &dbiUnif));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 0, &dbiUnif));
vk::DescriptorBufferInfo dbiSceneDesc{m_sceneDesc.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[2], &dbiSceneDesc));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 2, &dbiSceneDesc));
// All material buffers, 1 buffer per OBJ
std::vector<vk::DescriptorBufferInfo> dbiMat;
@ -153,11 +154,10 @@ void HelloVulkan::updateDescriptorSet()
dbiVert.emplace_back(obj.vertexBuffer.buffer, 0, VK_WHOLE_SIZE);
dbiIdx.emplace_back(obj.indexBuffer.buffer, 0, VK_WHOLE_SIZE);
}
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[1], dbiMat.data()));
writes.emplace_back(
nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[4], dbiMatIdx.data()));
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[5], dbiVert.data()));
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[6], dbiIdx.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 1, dbiMat.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 4, dbiMatIdx.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 5, dbiVert.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 6, dbiIdx.data()));
// All texture samplers
std::vector<vk::DescriptorImageInfo> diit;
@ -165,13 +165,13 @@ void HelloVulkan::updateDescriptorSet()
{
diit.push_back(texture.descriptor);
}
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[3], diit.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 3, diit.data()));
vk::AccelerationStructureKHR tlas = m_rtBuilder.getAccelerationStructure();
vk::WriteDescriptorSetAccelerationStructureKHR descASInfo;
descASInfo.setAccelerationStructureCount(1);
descASInfo.setPAccelerationStructures(&m_rtBuilder.getAccelerationStructure());
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[7], &descASInfo));
descASInfo.setPAccelerationStructures(&tlas);
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 7, &descASInfo));
// Writing the information
@ -198,19 +198,18 @@ void HelloVulkan::createGraphicsPipeline()
m_pipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
// Creating the Pipeline
std::vector<std::string> paths = defaultSearchPaths;
nvvkpp::GraphicsPipelineGenerator gpb(m_device, m_pipelineLayout, m_offscreenRenderPass);
gpb.depthStencilState = {true};
std::vector<std::string> paths = defaultSearchPaths;
nvvk::GraphicsPipelineGeneratorCombined gpb(m_device, m_pipelineLayout, m_offscreenRenderPass);
gpb.depthStencilState.depthTestEnable = true;
gpb.addShader(nvh::loadFile("shaders/vert_shader.vert.spv", true, paths), vkSS::eVertex);
gpb.addShader(nvh::loadFile("shaders/frag_shader.frag.spv", true, paths), vkSS::eFragment);
gpb.vertexInputState.bindingDescriptions = {{0, sizeof(VertexObj)}};
gpb.vertexInputState.attributeDescriptions = {
{0, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, pos)},
{1, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, nrm)},
{2, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, color)},
{3, 0, vk::Format::eR32G32Sfloat, offsetof(VertexObj, texCoord)}};
gpb.addBindingDescription({0, sizeof(VertexObj)});
gpb.addAttributeDescriptions({{0, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, pos)},
{1, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, nrm)},
{2, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, color)},
{3, 0, vk::Format::eR32G32Sfloat, offsetof(VertexObj, texCoord)}});
m_graphicsPipeline = gpb.create();
m_graphicsPipeline = gpb.createPipeline();
m_debug.setObjectName(m_graphicsPipeline, "Graphics");
}
@ -243,8 +242,8 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
model.nbVertices = static_cast<uint32_t>(loader.m_vertices.size());
// Create the buffers on Device and copy vertices, indices and materials
nvvkpp::SingleCommandBuffer cmdBufGet(m_device, m_graphicsQueueIndex);
vk::CommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
nvvk::CommandPool cmdBufGet(m_device, m_graphicsQueueIndex);
vk::CommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
model.vertexBuffer =
m_alloc.createBuffer(cmdBuf, loader.m_vertices,
vkBU::eVertexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress);
@ -255,8 +254,8 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, vkBU::eStorageBuffer);
// Creates all textures found
createTextureImages(cmdBuf, loader.m_textures);
cmdBufGet.flushCommandBuffer(cmdBuf);
m_alloc.flushStaging();
cmdBufGet.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
std::string objNb = std::to_string(instance.objIndex);
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb).c_str()));
@ -291,12 +290,12 @@ void HelloVulkan::createUniformBuffer()
void HelloVulkan::createSceneDescriptionBuffer()
{
using vkBU = vk::BufferUsageFlagBits;
nvvkpp::SingleCommandBuffer cmdGen(m_device, m_graphicsQueueIndex);
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
auto cmdBuf = cmdGen.createCommandBuffer();
m_sceneDesc = m_alloc.createBuffer(cmdBuf, m_objInstance, vkBU::eStorageBuffer);
cmdGen.flushCommandBuffer(cmdBuf);
m_alloc.flushStaging();
cmdGen.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
m_debug.setObjectName(m_sceneDesc.buffer, "sceneDesc");
}
@ -316,21 +315,21 @@ void HelloVulkan::createTextureImages(const vk::CommandBuffer& cmdBuf,
// If no textures are present, create a dummy one to accommodate the pipeline layout
if(textures.empty() && m_textures.empty())
{
nvvkTexture texture;
nvvk::Texture texture;
std::array<uint8_t, 4> color{255u, 255u, 255u, 255u};
vk::DeviceSize bufferSize = sizeof(color);
auto imgSize = vk::Extent2D(1, 1);
auto imageCreateInfo = nvvkpp::image::create2DInfo(imgSize, format);
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format);
// Creating the VKImage
texture = m_alloc.createImage(cmdBuf, bufferSize, color.data(), imageCreateInfo);
// Setting up the descriptor used by the shader
texture.descriptor =
nvvkpp::image::create2DDescriptor(m_device, texture.image, samplerCreateInfo, format);
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, color.data(), imageCreateInfo);
vk::ImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
// The image format must be in VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
nvvkpp::image::setImageLayout(cmdBuf, texture.image, vk::ImageLayout::eUndefined,
vk::ImageLayout::eShaderReadOnlyOptimal);
nvvk::cmdBarrierImageLayout(cmdBuf, texture.image, vk::ImageLayout::eUndefined,
vk::ImageLayout::eShaderReadOnlyOptimal);
m_textures.push_back(texture);
}
else
@ -357,16 +356,15 @@ void HelloVulkan::createTextureImages(const vk::CommandBuffer& cmdBuf,
vk::DeviceSize bufferSize = static_cast<uint64_t>(texWidth) * texHeight * sizeof(uint8_t) * 4;
auto imgSize = vk::Extent2D(texWidth, texHeight);
auto imageCreateInfo = nvvkpp::image::create2DInfo(imgSize, format, vkIU::eSampled, true);
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format, vkIU::eSampled, true);
{
nvvkTexture texture;
texture = m_alloc.createImage(cmdBuf, bufferSize, pixels, imageCreateInfo);
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, pixels, imageCreateInfo);
nvvk::cmdGenerateMipmaps(cmdBuf, image.image, format, imgSize, imageCreateInfo.mipLevels);
vk::ImageViewCreateInfo ivInfo =
nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
nvvk::Texture texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
nvvkpp::image::generateMipmaps(cmdBuf, texture.image, format, imgSize,
imageCreateInfo.mipLevels);
texture.descriptor =
nvvkpp::image::create2DDescriptor(m_device, texture.image, samplerCreateInfo, format);
m_textures.push_back(texture);
}
}
@ -438,7 +436,7 @@ void HelloVulkan::rasterize(const vk::CommandBuffer& cmdBuf)
cmdBuf.pushConstants<ObjPushConstant>(m_pipelineLayout, vkSS::eVertex | vkSS::eFragment, 0,
m_pushConstant);
cmdBuf.bindVertexBuffers(0, 1, &model.vertexBuffer.buffer, &offset);
cmdBuf.bindVertexBuffers(0, {model.vertexBuffer.buffer}, {offset});
cmdBuf.bindIndexBuffer(model.indexBuffer.buffer, 0, vk::IndexType::eUint32);
cmdBuf.drawIndexed(model.nbIndices, 1, 0, 0, 0);
}
@ -467,49 +465,54 @@ void HelloVulkan::createOffscreenRender()
m_alloc.destroy(m_offscreenDepth);
// Creating the color image
auto colorCreateInfo = nvvkpp::image::create2DInfo(m_size, m_offscreenColorFormat,
vk::ImageUsageFlagBits::eColorAttachment
| vk::ImageUsageFlagBits::eSampled
| vk::ImageUsageFlagBits::eStorage);
m_offscreenColor = m_alloc.createImage(colorCreateInfo);
{
auto colorCreateInfo = nvvk::makeImage2DCreateInfo(m_size, m_offscreenColorFormat,
vk::ImageUsageFlagBits::eColorAttachment
| vk::ImageUsageFlagBits::eSampled
| vk::ImageUsageFlagBits::eStorage);
m_offscreenColor.descriptor =
nvvkpp::image::create2DDescriptor(m_device, m_offscreenColor.image, vk::SamplerCreateInfo{},
m_offscreenColorFormat, vk::ImageLayout::eGeneral);
nvvk::Image image = m_alloc.createImage(colorCreateInfo);
vk::ImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, colorCreateInfo);
m_offscreenColor = m_alloc.createTexture(image, ivInfo, vk::SamplerCreateInfo());
m_offscreenColor.descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}
// Creating the depth buffer
auto depthCreateInfo =
nvvkpp::image::create2DInfo(m_size, m_offscreenDepthFormat,
nvvk::makeImage2DCreateInfo(m_size, m_offscreenDepthFormat,
vk::ImageUsageFlagBits::eDepthStencilAttachment);
m_offscreenDepth = m_alloc.createImage(depthCreateInfo);
{
nvvk::Image image = m_alloc.createImage(depthCreateInfo);
vk::ImageViewCreateInfo depthStencilView;
depthStencilView.setViewType(vk::ImageViewType::e2D);
depthStencilView.setFormat(m_offscreenDepthFormat);
depthStencilView.setSubresourceRange({vk::ImageAspectFlagBits::eDepth, 0, 1, 0, 1});
depthStencilView.setImage(m_offscreenDepth.image);
m_offscreenDepth.descriptor.imageView = m_device.createImageView(depthStencilView);
vk::ImageViewCreateInfo depthStencilView;
depthStencilView.setViewType(vk::ImageViewType::e2D);
depthStencilView.setFormat(m_offscreenDepthFormat);
depthStencilView.setSubresourceRange({vk::ImageAspectFlagBits::eDepth, 0, 1, 0, 1});
depthStencilView.setImage(image.image);
m_offscreenDepth = m_alloc.createTexture(image, depthStencilView);
}
// Setting the image layout for both color and depth
{
nvvkpp::SingleCommandBuffer genCmdBuf(m_device, m_graphicsQueueIndex);
auto cmdBuf = genCmdBuf.createCommandBuffer();
nvvkpp::image::setImageLayout(cmdBuf, m_offscreenColor.image, vk::ImageLayout::eUndefined,
vk::ImageLayout::eGeneral);
nvvkpp::image::setImageLayout(cmdBuf, m_offscreenDepth.image, vk::ImageAspectFlagBits::eDepth,
vk::ImageLayout::eUndefined,
vk::ImageLayout::eDepthStencilAttachmentOptimal);
nvvk::CommandPool genCmdBuf(m_device, m_graphicsQueueIndex);
auto cmdBuf = genCmdBuf.createCommandBuffer();
nvvk::cmdBarrierImageLayout(cmdBuf, m_offscreenColor.image, vk::ImageLayout::eUndefined,
vk::ImageLayout::eGeneral);
nvvk::cmdBarrierImageLayout(cmdBuf, m_offscreenDepth.image, vk::ImageLayout::eUndefined,
vk::ImageLayout::eDepthStencilAttachmentOptimal,
vk::ImageAspectFlagBits::eDepth);
genCmdBuf.flushCommandBuffer(cmdBuf);
genCmdBuf.submitAndWait(cmdBuf);
}
// Creating a renderpass for the offscreen
if(!m_offscreenRenderPass)
{
m_offscreenRenderPass =
nvvkpp::util::createRenderPass(m_device, {m_offscreenColorFormat}, m_offscreenDepthFormat,
1, true, true, vk::ImageLayout::eGeneral,
vk::ImageLayout::eGeneral);
nvvk::createRenderPass(m_device, {m_offscreenColorFormat}, m_offscreenDepthFormat, 1, true,
true, vk::ImageLayout::eGeneral, vk::ImageLayout::eGeneral);
}
// Creating the frame buffer for offscreen
@ -546,13 +549,14 @@ void HelloVulkan::createPostPipeline()
// Pipeline: completely generic, no vertices
std::vector<std::string> paths = defaultSearchPaths;
nvvkpp::GraphicsPipelineGenerator pipelineGenerator(m_device, m_postPipelineLayout, m_renderPass);
nvvk::GraphicsPipelineGeneratorCombined pipelineGenerator(m_device, m_postPipelineLayout,
m_renderPass);
pipelineGenerator.addShader(nvh::loadFile("shaders/passthrough.vert.spv", true, paths),
vk::ShaderStageFlagBits::eVertex);
pipelineGenerator.addShader(nvh::loadFile("shaders/post.frag.spv", true, paths),
vk::ShaderStageFlagBits::eFragment);
pipelineGenerator.rasterizationState.setCullMode(vk::CullModeFlagBits::eNone);
m_postPipeline = pipelineGenerator.create();
m_postPipeline = pipelineGenerator.createPipeline();
m_debug.setObjectName(m_postPipeline, "post");
}
@ -566,10 +570,10 @@ void HelloVulkan::createPostDescriptor()
using vkDT = vk::DescriptorType;
using vkSS = vk::ShaderStageFlagBits;
m_postDescSetLayoutBind.emplace_back(vkDS(0, vkDT::eCombinedImageSampler, 1, vkSS::eFragment));
m_postDescSetLayout = nvvkpp::util::createDescriptorSetLayout(m_device, m_postDescSetLayoutBind);
m_postDescPool = nvvkpp::util::createDescriptorPool(m_device, m_postDescSetLayoutBind);
m_postDescSet = nvvkpp::util::createDescriptorSet(m_device, m_postDescPool, m_postDescSetLayout);
m_postDescSetLayoutBind.addBinding(vkDS(0, vkDT::eCombinedImageSampler, 1, vkSS::eFragment));
m_postDescSetLayout = m_postDescSetLayoutBind.createLayout(m_device);
m_postDescPool = m_postDescSetLayoutBind.createPool(m_device);
m_postDescSet = nvvk::allocateDescriptorSet(m_device, m_postDescPool, m_postDescSetLayout);
}
//--------------------------------------------------------------------------------------------------
@ -578,8 +582,7 @@ void HelloVulkan::createPostDescriptor()
void HelloVulkan::updatePostDescriptorSet()
{
vk::WriteDescriptorSet writeDescriptorSets =
nvvkpp::util::createWrite(m_postDescSet, m_postDescSetLayoutBind[0],
&m_offscreenColor.descriptor);
m_postDescSetLayoutBind.makeWrite(m_postDescSet, 0, &m_offscreenColor.descriptor);
m_device.updateDescriptorSets(writeDescriptorSets, nullptr);
}
@ -617,13 +620,13 @@ void HelloVulkan::initRayTracing()
auto properties = m_physicalDevice.getProperties2<vk::PhysicalDeviceProperties2,
vk::PhysicalDeviceRayTracingPropertiesKHR>();
m_rtProperties = properties.get<vk::PhysicalDeviceRayTracingPropertiesKHR>();
m_rtBuilder.setup(m_device, m_physicalDevice, m_graphicsQueueIndex);
m_rtBuilder.setup(m_device, &m_alloc, m_graphicsQueueIndex);
}
//--------------------------------------------------------------------------------------------------
// Converting a OBJ primitive to the ray tracing geometry used for the BLAS
//
nvvkpp::RaytracingBuilderKHR::Blas HelloVulkan::objectToVkGeometryKHR(const ObjModel& model)
nvvk::RaytracingBuilderKHR::Blas HelloVulkan::objectToVkGeometryKHR(const ObjModel& model)
{
// Setting up the creation info of acceleration structure
vk::AccelerationStructureCreateGeometryTypeInfoKHR asCreate;
@ -660,7 +663,7 @@ nvvkpp::RaytracingBuilderKHR::Blas HelloVulkan::objectToVkGeometryKHR(const ObjM
offset.setTransformOffset(0);
// Our blas is only one geometry, but could be made of many geometries
nvvkpp::RaytracingBuilderKHR::Blas blas;
nvvk::RaytracingBuilderKHR::Blas blas;
blas.asGeometry.emplace_back(asGeom);
blas.asCreateGeometryInfo.emplace_back(asCreate);
blas.asBuildOffsetInfo.emplace_back(offset);
@ -674,7 +677,7 @@ nvvkpp::RaytracingBuilderKHR::Blas HelloVulkan::objectToVkGeometryKHR(const ObjM
void HelloVulkan::createBottomLevelAS()
{
// BLAS - Storing each primitive in a geometry
std::vector<nvvkpp::RaytracingBuilderKHR::Blas> allBlas;
std::vector<nvvk::RaytracingBuilderKHR::Blas> allBlas;
allBlas.reserve(m_objModel.size());
for(const auto& obj : m_objModel)
{
@ -688,16 +691,16 @@ void HelloVulkan::createBottomLevelAS()
void HelloVulkan::createTopLevelAS()
{
std::vector<nvvkpp::RaytracingBuilderKHR::Instance> tlas;
std::vector<nvvk::RaytracingBuilderKHR::Instance> tlas;
tlas.reserve(m_objInstance.size());
for(int i = 0; i < static_cast<int>(m_objInstance.size()); i++)
{
nvvkpp::RaytracingBuilderKHR::Instance rayInst;
nvvk::RaytracingBuilderKHR::Instance rayInst;
rayInst.transform = m_objInstance[i].transform; // Position of the instance
rayInst.instanceId = i; // gl_InstanceID
rayInst.blasId = m_objInstance[i].objIndex;
rayInst.hitGroupId = 0; // We will use the same hit group for all objects
rayInst.flags = vk::GeometryInstanceFlagBitsKHR::eTriangleCullDisable;
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
tlas.emplace_back(rayInst);
}
m_rtBuilder.buildTlas(tlas, vk::BuildAccelerationStructureFlagBitsKHR::ePreferFastTrace);