Add vk_ray_trace_indirect_scissor sample
This commit is contained in:
parent
27d8a79ce3
commit
a6690f149a
30 changed files with 4498 additions and 6 deletions
163
ray_tracing_indirect_scissor/shaders/lanternIndirect.comp
Normal file
163
ray_tracing_indirect_scissor/shaders/lanternIndirect.comp
Normal file
|
|
@ -0,0 +1,163 @@
|
|||
#version 460
|
||||
#extension GL_GOOGLE_include_directive : enable
|
||||
|
||||
// Compute shader for filling in raytrace indirect parameters for each lantern
|
||||
// based on the current camera position (passed as view and proj matrix in
|
||||
// push constant).
|
||||
//
|
||||
// Designed to be dispatched with only one work group; it alone fills in
|
||||
// the entire lantern array (of length lanternCount, in also push constant).
|
||||
|
||||
#define LOCAL_SIZE 128
|
||||
layout(local_size_x = LOCAL_SIZE, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
#include "LanternIndirectEntry.glsl"
|
||||
|
||||
layout(binding = 0, set = 0) buffer LanternArray { LanternIndirectEntry lanterns[]; } lanterns;
|
||||
|
||||
layout(push_constant) uniform Constants
|
||||
{
|
||||
vec4 viewRowX;
|
||||
vec4 viewRowY;
|
||||
vec4 viewRowZ;
|
||||
mat4 proj;
|
||||
float nearZ;
|
||||
int screenX;
|
||||
int screenY;
|
||||
int lanternCount;
|
||||
}
|
||||
pushC;
|
||||
|
||||
// Copy the technique of "2D Polyhedral Bounds of a Clipped,
|
||||
// Perspective-Projected 3D Sphere" M. Mara M. McGuire
|
||||
// http://jcgt.org/published/0002/02/05/paper.pdf
|
||||
// to compute a screen-space rectangle covering the given Lantern's
|
||||
// light radius-of-effect. Result is in screen (pixel) coordinates.
|
||||
void getScreenCoordBox(in LanternIndirectEntry lantern, out ivec2 lower, out ivec2 upper);
|
||||
|
||||
// Use the xyz and radius of lanterns[i] plus the transformation matrices
|
||||
// in pushC to fill in the offset and indirect parameters of lanterns[i]
|
||||
// (defines the screen rectangle that this lantern's light is bounded in).
|
||||
void fillIndirectEntry(int i)
|
||||
{
|
||||
LanternIndirectEntry lantern = lanterns.lanterns[i];
|
||||
ivec2 lower, upper;
|
||||
getScreenCoordBox(lantern, lower, upper);
|
||||
|
||||
lanterns.lanterns[i].indirectWidth = max(0, upper.x - lower.x);
|
||||
lanterns.lanterns[i].indirectHeight = max(0, upper.y - lower.y);
|
||||
lanterns.lanterns[i].indirectDepth = 1;
|
||||
lanterns.lanterns[i].offsetX = lower.x;
|
||||
lanterns.lanterns[i].offsetY = lower.y;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
for (int i = int(gl_LocalInvocationID.x); i < pushC.lanternCount; i += LOCAL_SIZE)
|
||||
{
|
||||
fillIndirectEntry(i);
|
||||
}
|
||||
}
|
||||
|
||||
// Functions below modified from the paper.
|
||||
float square(float a) { return a*a; }
|
||||
|
||||
void getBoundsForAxis(
|
||||
in bool xAxis,
|
||||
in vec3 center,
|
||||
in float radius,
|
||||
in float nearZ,
|
||||
in mat4 projMatrix,
|
||||
out vec3 U,
|
||||
out vec3 L) {
|
||||
bool trivialAccept = (center.z + radius) < nearZ; // Entirely in back of nearPlane (Trivial Accept)
|
||||
vec3 a = xAxis ? vec3(1, 0, 0) : vec3(0, 1, 0);
|
||||
|
||||
// given in coordinates (a,z), where a is in the direction of the vector a, and z is in the standard z direction
|
||||
vec2 projectedCenter = vec2(dot(a, center), center.z);
|
||||
vec2 bounds_az[2];
|
||||
float tSquared = dot(projectedCenter, projectedCenter) - square(radius);
|
||||
float t, cLength, costheta = 0, sintheta = 0;
|
||||
|
||||
if(tSquared > 0) { // Camera is outside sphere
|
||||
// Distance to the tangent points of the sphere (points where a vector from the camera are tangent to the sphere) (calculated a-z space)
|
||||
t = sqrt(tSquared);
|
||||
cLength = length(projectedCenter);
|
||||
|
||||
// Theta is the angle between the vector from the camera to the center of the sphere and the vectors from the camera to the tangent points
|
||||
costheta = t / cLength;
|
||||
sintheta = radius / cLength;
|
||||
}
|
||||
float sqrtPart = 0.0f;
|
||||
if(!trivialAccept) sqrtPart = sqrt(square(radius) - square(nearZ - projectedCenter.y));
|
||||
|
||||
for(int i = 0; i < 2; ++i){
|
||||
if(tSquared > 0) {
|
||||
float x = costheta * projectedCenter.x + -sintheta * projectedCenter.y;
|
||||
float y = sintheta * projectedCenter.x + costheta * projectedCenter.y;
|
||||
bounds_az[i] = costheta * vec2(x, y);
|
||||
}
|
||||
|
||||
if(!trivialAccept && (tSquared <= 0 || bounds_az[i].y > nearZ)) {
|
||||
bounds_az[i].x = projectedCenter.x + sqrtPart;
|
||||
bounds_az[i].y = nearZ;
|
||||
}
|
||||
sintheta *= -1; // negate theta for B
|
||||
sqrtPart *= -1; // negate sqrtPart for B
|
||||
}
|
||||
U = bounds_az[0].x * a;
|
||||
U.z = bounds_az[0].y;
|
||||
L = bounds_az[1].x * a;
|
||||
L.z = bounds_az[1].y;
|
||||
}
|
||||
|
||||
/** Center is in camera space */
|
||||
void getBoundingBox(
|
||||
in vec3 center,
|
||||
in float radius,
|
||||
in float nearZ,
|
||||
in mat4 projMatrix,
|
||||
out vec2 ndc_low,
|
||||
out vec2 ndc_high) {
|
||||
vec3 maxXHomogenous, minXHomogenous, maxYHomogenous, minYHomogenous;
|
||||
getBoundsForAxis(true, center, radius, nearZ, projMatrix, maxXHomogenous, minXHomogenous);
|
||||
getBoundsForAxis(false, center, radius, nearZ, projMatrix, maxYHomogenous, minYHomogenous);
|
||||
|
||||
vec4 projRow0 = vec4(projMatrix[0][0], projMatrix[1][0], projMatrix[2][0], projMatrix[3][0]);
|
||||
vec4 projRow1 = vec4(projMatrix[0][1], projMatrix[1][1], projMatrix[2][1], projMatrix[3][1]);
|
||||
vec4 projRow3 = vec4(projMatrix[0][3], projMatrix[1][3], projMatrix[2][3], projMatrix[3][3]);
|
||||
|
||||
// We only need one coordinate for each point, so we save computation by only calculating x(or y) and w
|
||||
float maxX_w = dot(vec4(maxXHomogenous, 1.0f), projRow3);
|
||||
float minX_w = dot(vec4(minXHomogenous, 1.0f), projRow3);
|
||||
float maxY_w = dot(vec4(maxYHomogenous, 1.0f), projRow3);
|
||||
float minY_w = dot(vec4(minYHomogenous, 1.0f), projRow3);
|
||||
|
||||
float maxX = dot(vec4(maxXHomogenous, 1.0f), projRow0) / maxX_w;
|
||||
float minX = dot(vec4(minXHomogenous, 1.0f), projRow0) / minX_w;
|
||||
float maxY = dot(vec4(maxYHomogenous, 1.0f), projRow1) / maxY_w;
|
||||
float minY = dot(vec4(minYHomogenous, 1.0f), projRow1) / minY_w;
|
||||
|
||||
// Paper minX, etc. names are misleading, not necessarily min. Fix here.
|
||||
ndc_low = vec2(min(minX, maxX), min(minY, maxY));
|
||||
ndc_high = vec2(max(minX, maxX), max(minY, maxY));
|
||||
}
|
||||
|
||||
void getScreenCoordBox(in LanternIndirectEntry lantern, out ivec2 lower, out ivec2 upper)
|
||||
{
|
||||
vec4 lanternWorldCenter = vec4(lantern.x, lantern.y, lantern.z, 1);
|
||||
vec3 center = vec3(
|
||||
dot(pushC.viewRowX, lanternWorldCenter),
|
||||
dot(pushC.viewRowY, lanternWorldCenter),
|
||||
dot(pushC.viewRowZ, lanternWorldCenter));
|
||||
vec2 ndc_low, ndc_high;
|
||||
float paperNearZ = -abs(pushC.nearZ); // Paper expected negative nearZ, took 2 days to figure out!
|
||||
getBoundingBox(center, lantern.radius, paperNearZ, pushC.proj, ndc_low, ndc_high);
|
||||
|
||||
// Convert NDC [-1,+1]^2 coordinates to screen coordinates, and clamp to stay in bounds.
|
||||
|
||||
lower.x = clamp(int((ndc_low.x * 0.5 + 0.5) * pushC.screenX), 0, pushC.screenX);
|
||||
lower.y = clamp(int((ndc_low.y * 0.5 + 0.5) * pushC.screenY), 0, pushC.screenY);
|
||||
upper.x = clamp(int((ndc_high.x * 0.5 + 0.5) * pushC.screenX), 0, pushC.screenX);
|
||||
upper.y = clamp(int((ndc_high.y * 0.5 + 0.5) * pushC.screenY), 0, pushC.screenY);
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue