Using buffer reference instead of un-sized array

This commit is contained in:
mklefrancois 2021-06-11 12:25:06 +02:00
parent e3a57e6d63
commit c8a0122dd6
248 changed files with 2593 additions and 2660 deletions

View file

@ -35,6 +35,7 @@ compile_glsl_directory(
SRC "${CMAKE_CURRENT_SOURCE_DIR}/shaders"
DST "${CMAKE_CURRENT_SOURCE_DIR}/spv"
VULKAN_TARGET "vulkan1.2"
DEPENDENCY ${VULKAN_BUILD_DEPENDENCIES}
)
@ -52,7 +53,8 @@ target_sources(${PROJNAME} PUBLIC ${GLSL_SOURCES} ${GLSL_HEADERS})
source_group("Common" FILES ${COMMON_SOURCE_FILES} ${PACKAGE_SOURCE_FILES})
source_group("Sources" FILES ${SOURCE_FILES})
source_group("Headers" FILES ${HEADER_FILES})
source_group("Shader_Files" FILES ${GLSL_SOURCES} ${GLSL_HEADERS})
source_group("Shader Sources" FILES ${GLSL_SOURCES})
source_group("Shader Headers" FILES ${GLSL_HEADERS})
#--------------------------------------------------------------------------------------------------

View file

@ -130,6 +130,13 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
m_debug.setObjectName(m_spheresAabbBuffer.buffer, "spheresAabb");
m_debug.setObjectName(m_spheresMatColorBuffer.buffer, "spheresMat");
m_debug.setObjectName(m_spheresMatIndexBuffer.buffer, "spheresMatIdx");
// Adding an extra instance to get access to the material buffers
ObjInstance instance{};
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
instance.materials = nvvk::getBufferDeviceAddress(m_device, m_spheresMatColorBuffer.buffer);
instance.materialIndices = nvvk::getBufferDeviceAddress(m_device, m_spheresMatIndexBuffer.buffer);
m_objInstance.emplace_back(instance);
}
~~~~
@ -152,9 +159,7 @@ What is changing compare to triangle primitive is the Aabb data (see Aabb struct
//
nvvk::RaytracingBuilderKHR::BlasInput HelloVulkan::sphereToVkGeometryKHR()
{
VkBufferDeviceAddressInfo info{VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO};
info.buffer = m_spheresAabbBuffer.buffer;
VkDeviceAddress dataAddress = vkGetBufferDeviceAddress(m_device, &info);
VkDeviceAddress dataAddress = nvvk::getBufferDeviceAddress(m_device, m_spheresAabbBuffer.buffer);
VkAccelerationStructureGeometryAabbsDataKHR aabbs{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_AABBS_DATA_KHR};
aabbs.data.deviceAddress = dataAddress;
@ -233,14 +238,26 @@ Similarly in `createTopLevelAS()`, the top level acceleration structure will nee
The hitGroupId will be set to 1 instead of 0. We need to add a new hit group for the implicit primitives, since we will need to compute attributes like the normal, since they are not provide like with triangle primitives.
Just before building the TLAS, we need to add the following
Because we have added an extra instance when creating the implicit objects, there is one element less to loop for. Therefore the loop will now look like this:
~~~~ C++
auto nbObj = static_cast<uint32_t>(m_objInstance.size()) - 1;
tlas.reserve(nbObj);
for(uint32_t i = 0; i < nbObj; i++)
{
...
}
~~~~
Just after the loop and before building the TLAS, we need to add the following.
~~~~ C++
// Add the blas containing all spheres
{
nvvk::RaytracingBuilder::Instance rayInst;
rayInst.transform = m_objInstance[0].transform; // Position of the instance
rayInst.instanceCustomId = static_cast<uint32_t>(tlas.size()); // gl_InstanceCustomIndexEXT
rayInst.transform = m_objInstance[0].transform; // Position of the instance
rayInst.instanceCustomId = nbObj; // gl_InstanceCustomIndexEXT
rayInst.blasId = static_cast<uint32_t>(m_objModel.size());
rayInst.hitGroupId = 1; // We will use the same hit group for all objects
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
@ -248,50 +265,26 @@ Just before building the TLAS, we need to add the following
}
~~~~
The `instanceCustomId` will give us the last element of m_objInstance, and in the shader will will be able to access the materials
assigned to the implicit objects.
## Descriptors
To access the newly created buffers holding all the spheres and materials, some changes are required to the descriptors.
In function `createDescriptorSetLayout()`, the addition of the material and material index need to be instructed.
To access the newly created buffers holding all the spheres, some changes are required to the descriptors.
The descriptor need to add an binding to the implicit object buffer.
~~~~ C++
// Materials (binding = 1)
m_descSetLayoutBind.addBinding(1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, nbObj+1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Materials Index (binding = 4)
m_descSetLayoutBind.addBinding(4, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, nbObj +1,
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
~~~~
And the new buffer holding the spheres
~~~~ C++
// Storing spheres (binding = 7)
m_descSetLayoutBind.addBinding(7, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
// Storing spheres (binding = 3)
m_descSetLayoutBind.addBinding(3, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR);
~~~~
The function `updateDescriptorSet()` which is writing the values of the buffer need also to be modified.
At the end of the loop on all models, lets add the new material and material index.
~~~~ C++
for(auto& m : m_objModel)
{
dbiMat.push_back({m.matColorBuffer.buffer, 0, VK_WHOLE_SIZE});
dbiMatIdx.push_back({m.matIndexBuffer.buffer, 0, VK_WHOLE_SIZE});
dbiVert.push_back({m.vertexBuffer.buffer, 0, VK_WHOLE_SIZE});
dbiIdx.push_back({m.indexBuffer.buffer, 0, VK_WHOLE_SIZE});
}
dbiMat.push_back({m_spheresMatColorBuffer.buffer, 0, VK_WHOLE_SIZE});
dbiMatIdx.push_back({m_spheresMatIndexBuffer.buffer, 0, VK_WHOLE_SIZE});
~~~~
Then write the buffer for the spheres
Then write the buffer for the spheres after the array of textures
~~~~ C++
VkDescriptorBufferInfo dbiSpheres{m_spheresBuffer.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 7, &dbiSpheres));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 3, &dbiSpheres));
~~~~
## Intersection Shader
@ -365,6 +358,8 @@ We first declare the extensions and include common files.
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
~~~~
@ -373,11 +368,10 @@ We first declare the extensions and include common files.
The following is the topology of all spheres, which we will be able to retrieve using `gl_PrimitiveID`.
~~~~ C++
layout(binding = 7, set = 1, scalar) buffer allSpheres_
layout(binding = 3, set = 1, scalar) buffer allSpheres_
{
Sphere i[];
}
allSpheres;
Sphere allSpheres[];
};
~~~~
We will implement two intersetion method against the incoming ray.

View file

@ -35,6 +35,7 @@
#include "nvvk/pipeline_vk.hpp"
#include "nvvk/renderpasses_vk.hpp"
#include "nvvk/shaders_vk.hpp"
#include "nvvk/buffers_vk.hpp"
#include <random>
extern std::vector<std::string> defaultSearchPaths;
@ -114,28 +115,17 @@ void HelloVulkan::updateUniformBuffer(const VkCommandBuffer& cmdBuf)
void HelloVulkan::createDescriptorSetLayout()
{
auto nbTxt = static_cast<uint32_t>(m_textures.size());
auto nbObj = static_cast<uint32_t>(m_objModel.size());
// Camera matrices (binding = 0)
m_descSetLayoutBind.addBinding(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_RAYGEN_BIT_KHR);
// Materials (binding = 1)
m_descSetLayoutBind.addBinding(1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, nbObj + 1,
// Scene description (binding = 1)
m_descSetLayoutBind.addBinding(1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Scene description (binding = 2)
m_descSetLayoutBind.addBinding(2, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Textures (binding = 3)
m_descSetLayoutBind.addBinding(3, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, nbTxt,
// Textures (binding = 2)
m_descSetLayoutBind.addBinding(2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, nbTxt,
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Materials Index (binding = 4)
m_descSetLayoutBind.addBinding(4, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, nbObj + 1,
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Storing vertices (binding = 5)
m_descSetLayoutBind.addBinding(5, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, nbObj, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Storing indices (binding = 6)
m_descSetLayoutBind.addBinding(6, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, nbObj, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Storing spheres (binding = 7)
m_descSetLayoutBind.addBinding(7, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
// Storing spheres (binding = 3)
m_descSetLayoutBind.addBinding(3, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR);
@ -154,31 +144,9 @@ void HelloVulkan::updateDescriptorSet()
// Camera matrices and scene description
VkDescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 0, &dbiUnif));
VkDescriptorBufferInfo dbiSceneDesc{m_sceneDesc.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 2, &dbiSceneDesc));
// All material buffers, 1 buffer per OBJ
std::vector<VkDescriptorBufferInfo> dbiMat;
std::vector<VkDescriptorBufferInfo> dbiMatIdx;
std::vector<VkDescriptorBufferInfo> dbiVert;
std::vector<VkDescriptorBufferInfo> dbiIdx;
for(auto& m : m_objModel)
{
dbiMat.push_back({m.matColorBuffer.buffer, 0, VK_WHOLE_SIZE});
dbiMatIdx.push_back({m.matIndexBuffer.buffer, 0, VK_WHOLE_SIZE});
dbiVert.push_back({m.vertexBuffer.buffer, 0, VK_WHOLE_SIZE});
dbiIdx.push_back({m.indexBuffer.buffer, 0, VK_WHOLE_SIZE});
}
dbiMat.push_back({m_spheresMatColorBuffer.buffer, 0, VK_WHOLE_SIZE});
dbiMatIdx.push_back({m_spheresMatIndexBuffer.buffer, 0, VK_WHOLE_SIZE});
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 1, dbiMat.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 4, dbiMatIdx.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 5, dbiVert.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 6, dbiIdx.data()));
VkDescriptorBufferInfo dbiSpheres{m_spheresBuffer.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 7, &dbiSpheres));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 1, &dbiSceneDesc));
// All texture samplers
std::vector<VkDescriptorImageInfo> diit;
@ -186,7 +154,10 @@ void HelloVulkan::updateDescriptorSet()
{
diit.emplace_back(texture.descriptor);
}
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 3, diit.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 2, diit.data()));
VkDescriptorBufferInfo dbiSpheres{m_spheresBuffer.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 3, &dbiSpheres));
// Writing the information
vkUpdateDescriptorSets(m_device, static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
@ -244,36 +215,42 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
m.specular = nvmath::pow(m.specular, 2.2f);
}
ObjInstance instance;
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
instance.transform = transform;
instance.transformIT = nvmath::transpose(nvmath::invert(transform));
instance.txtOffset = static_cast<uint32_t>(m_textures.size());
ObjModel model;
model.nbIndices = static_cast<uint32_t>(loader.m_indices.size());
model.nbVertices = static_cast<uint32_t>(loader.m_vertices.size());
// Create the buffers on Device and copy vertices, indices and materials
nvvk::CommandPool cmdBufGet(m_device, m_graphicsQueueIndex);
VkCommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
VkBufferUsageFlags rtUsage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
| VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR;
model.vertexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_vertices, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | rtUsage);
model.indexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_indices, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | rtUsage);
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
VkCommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
VkBufferUsageFlags flag = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
VkBufferUsageFlags rayTracingFlags = // used also for building acceleration structures
flag | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
model.vertexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_vertices, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | rayTracingFlags);
model.indexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_indices, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | rayTracingFlags);
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
// Creates all textures found
uint32_t txtOffset = static_cast<uint32_t>(m_textures.size());
createTextureImages(cmdBuf, loader.m_textures);
cmdBufGet.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
std::string objNb = std::to_string(instance.objIndex);
std::string objNb = std::to_string(m_objModel.size());
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb).c_str()));
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb).c_str()));
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb).c_str()));
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb).c_str()));
ObjInstance instance;
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
instance.transform = transform;
instance.transformIT = nvmath::transpose(nvmath::invert(transform));
instance.txtOffset = txtOffset;
instance.vertices = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
instance.indices = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
instance.materials = nvvk::getBufferDeviceAddress(m_device, model.matColorBuffer.buffer);
instance.materialIndices = nvvk::getBufferDeviceAddress(m_device, model.matIndexBuffer.buffer);
m_objModel.emplace_back(model);
m_objInstance.emplace_back(instance);
}
@ -640,11 +617,8 @@ void HelloVulkan::initRayTracing()
auto HelloVulkan::objectToVkGeometryKHR(const ObjModel& model)
{
// BLAS builder requires raw device addresses.
VkBufferDeviceAddressInfo info{VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO};
info.buffer = model.vertexBuffer.buffer;
VkDeviceAddress vertexAddress = vkGetBufferDeviceAddress(m_device, &info);
info.buffer = model.indexBuffer.buffer;
VkDeviceAddress indexAddress = vkGetBufferDeviceAddress(m_device, &info);
VkDeviceAddress vertexAddress = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
VkDeviceAddress indexAddress = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
uint32_t maxPrimitiveCount = model.nbIndices / 3;
@ -686,9 +660,7 @@ auto HelloVulkan::objectToVkGeometryKHR(const ObjModel& model)
//
nvvk::RaytracingBuilderKHR::BlasInput HelloVulkan::sphereToVkGeometryKHR()
{
VkBufferDeviceAddressInfo info{VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO};
info.buffer = m_spheresAabbBuffer.buffer;
VkDeviceAddress dataAddress = vkGetBufferDeviceAddress(m_device, &info);
VkDeviceAddress dataAddress = nvvk::getBufferDeviceAddress(m_device, m_spheresAabbBuffer.buffer);
VkAccelerationStructureGeometryAabbsDataKHR aabbs{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_AABBS_DATA_KHR};
aabbs.data.deviceAddress = dataAddress;
@ -765,8 +737,10 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
auto cmdBuf = genCmdBuf.createCommandBuffer();
m_spheresBuffer = m_alloc.createBuffer(cmdBuf, m_spheres, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
m_spheresAabbBuffer = m_alloc.createBuffer(cmdBuf, aabbs, VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
m_spheresMatIndexBuffer = m_alloc.createBuffer(cmdBuf, matIdx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
m_spheresMatColorBuffer = m_alloc.createBuffer(cmdBuf, materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
m_spheresMatIndexBuffer =
m_alloc.createBuffer(cmdBuf, matIdx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
m_spheresMatColorBuffer =
m_alloc.createBuffer(cmdBuf, materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
genCmdBuf.submitAndWait(cmdBuf);
// Debug information
@ -774,6 +748,14 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
m_debug.setObjectName(m_spheresAabbBuffer.buffer, "spheresAabb");
m_debug.setObjectName(m_spheresMatColorBuffer.buffer, "spheresMat");
m_debug.setObjectName(m_spheresMatIndexBuffer.buffer, "spheresMatIdx");
// Adding an extra instance to get access to the material buffers
ObjInstance instance{};
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
instance.materials = nvvk::getBufferDeviceAddress(m_device, m_spheresMatColorBuffer.buffer);
instance.materialIndices = nvvk::getBufferDeviceAddress(m_device, m_spheresMatIndexBuffer.buffer);
m_objInstance.emplace_back(instance);
}
void HelloVulkan::createBottomLevelAS()
@ -801,8 +783,10 @@ void HelloVulkan::createBottomLevelAS()
void HelloVulkan::createTopLevelAS()
{
std::vector<nvvk::RaytracingBuilderKHR::Instance> tlas;
tlas.reserve(m_objInstance.size());
for(uint32_t i = 0; i < static_cast<uint32_t>(m_objInstance.size()); i++)
auto nbObj = static_cast<uint32_t>(m_objInstance.size()) - 1;
tlas.reserve(nbObj);
for(uint32_t i = 0; i < nbObj; i++)
{
nvvk::RaytracingBuilderKHR::Instance rayInst;
rayInst.transform = m_objInstance[i].transform; // Position of the instance
@ -816,8 +800,8 @@ void HelloVulkan::createTopLevelAS()
// Add the blas containing all spheres
{
nvvk::RaytracingBuilderKHR::Instance rayInst;
rayInst.transform = m_objInstance[0].transform; // Position of the instance
rayInst.instanceCustomId = static_cast<uint32_t>(tlas.size()); // gl_InstanceCustomIndexEXT
rayInst.transform = m_objInstance[0].transform; // Position of the instance
rayInst.instanceCustomId = nbObj; // gl_InstanceCustomIndexEXT
rayInst.blasId = static_cast<uint32_t>(m_objModel.size());
rayInst.hitGroupId = 1; // We will use the same hit group for all objects
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
@ -1064,9 +1048,7 @@ void HelloVulkan::raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& c
uint32_t groupSize = nvh::align_up(m_rtProperties.shaderGroupHandleSize, m_rtProperties.shaderGroupBaseAlignment);
uint32_t groupStride = groupSize;
VkBufferDeviceAddressInfo info{VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO};
info.buffer = m_rtSBTBuffer.buffer;
VkDeviceAddress sbtAddress = vkGetBufferDeviceAddress(m_device, &info);
VkDeviceAddress sbtAddress = nvvk::getBufferDeviceAddress(m_device, m_rtSBTBuffer.buffer);
using Stride = VkStridedDeviceAddressRegionKHR;
std::array<Stride, 4> strideAddresses{Stride{sbtAddress + 0u * groupSize, groupStride, groupSize * 1}, // raygen

View file

@ -65,10 +65,14 @@ public:
// Instance of the OBJ
struct ObjInstance
{
uint32_t objIndex{0}; // Reference to the `m_objModel`
uint32_t txtOffset{0}; // Offset in `m_textures`
nvmath::mat4f transform{1}; // Position of the instance
nvmath::mat4f transformIT{1}; // Inverse transpose
nvmath::mat4f transform{1}; // Position of the instance
nvmath::mat4f transformIT{1}; // Inverse transpose
uint32_t objIndex{0}; // Reference to the `m_objModel`
uint32_t txtOffset{0}; // Offset in `m_textures`
VkDeviceAddress vertices;
VkDeviceAddress indices;
VkDeviceAddress materials;
VkDeviceAddress materialIndices;
};
// Information pushed at each draw call
@ -93,9 +97,10 @@ public:
VkDescriptorSetLayout m_descSetLayout;
VkDescriptorSet m_descSet;
nvvk::Buffer m_cameraMat; // Device-Host of the camera matrices
nvvk::Buffer m_sceneDesc; // Device buffer of the OBJ instances
std::vector<nvvk::Texture> m_textures; // vector of all textures of the scene
nvvk::Buffer m_cameraMat; // Device-Host of the camera matrices
nvvk::Buffer m_sceneDesc; // Device buffer of the OBJ instances
std::vector<nvvk::Texture> m_textures; // vector of all textures of the scene
nvvk::ResourceAllocatorDma m_alloc; // Allocator for buffer, images, acceleration structures

View file

@ -110,34 +110,28 @@ int main(int argc, char** argv)
std::string(PROJECT_NAME),
};
// Vulkan required extensions
assert(glfwVulkanSupported() == 1);
uint32_t count{0};
auto reqExtensions = glfwGetRequiredInstanceExtensions(&count);
// Requesting Vulkan extensions and layers
nvvk::ContextCreateInfo contextInfo(true);
contextInfo.setVersion(1, 2);
contextInfo.addInstanceLayer("VK_LAYER_LUNARG_monitor", true);
contextInfo.addInstanceExtension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, true);
contextInfo.addInstanceExtension(VK_KHR_SURFACE_EXTENSION_NAME);
#ifdef _WIN32
contextInfo.addInstanceExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
#else
contextInfo.addInstanceExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME);
contextInfo.addInstanceExtension(VK_KHR_XCB_SURFACE_EXTENSION_NAME);
#endif
contextInfo.addInstanceExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
contextInfo.addDeviceExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
contextInfo.addDeviceExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
contextInfo.addDeviceExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
contextInfo.addDeviceExtension(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME);
contextInfo.addDeviceExtension(VK_EXT_SCALAR_BLOCK_LAYOUT_EXTENSION_NAME);
nvvk::ContextCreateInfo contextInfo;
contextInfo.setVersion(1, 2); // Using Vulkan 1.2
for(uint32_t ext_id = 0; ext_id < count; ext_id++) // Adding required extensions (surface, win32, linux, ..)
contextInfo.addInstanceExtension(reqExtensions[ext_id]);
contextInfo.addInstanceLayer("VK_LAYER_LUNARG_monitor", true); // FPS in titlebar
contextInfo.addInstanceExtension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, true); // Allow debug names
contextInfo.addDeviceExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME); // Enabling ability to present rendering
// #VKRay: Activate the ray tracing extension
VkPhysicalDeviceAccelerationStructureFeaturesKHR accelFeature{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR};
contextInfo.addDeviceExtension(VK_KHR_ACCELERATION_STRUCTURE_EXTENSION_NAME, false, &accelFeature);
contextInfo.addDeviceExtension(VK_KHR_ACCELERATION_STRUCTURE_EXTENSION_NAME, false, &accelFeature); // To build acceleration structures
VkPhysicalDeviceRayTracingPipelineFeaturesKHR rtPipelineFeature{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR};
contextInfo.addDeviceExtension(VK_KHR_RAY_TRACING_PIPELINE_EXTENSION_NAME, false, &rtPipelineFeature);
contextInfo.addDeviceExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME);
contextInfo.addDeviceExtension(VK_KHR_PIPELINE_LIBRARY_EXTENSION_NAME);
contextInfo.addDeviceExtension(VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME);
contextInfo.addDeviceExtension(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME);
contextInfo.addDeviceExtension(VK_KHR_RAY_TRACING_PIPELINE_EXTENSION_NAME, false, &rtPipelineFeature); // To use vkCmdTraceRaysKHR
contextInfo.addDeviceExtension(VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME); // Required by ray tracing pipeline
contextInfo.addDeviceExtension(VK_KHR_SHADER_NON_SEMANTIC_INFO_EXTENSION_NAME);
// Creating Vulkan base application
nvvk::Context vkctx{};

View file

@ -16,13 +16,16 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 450
#extension GL_ARB_separate_shader_objects : enable
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
#include "wavefront.glsl"
@ -37,30 +40,32 @@ pushC;
// clang-format off
// Incoming
//layout(location = 0) flat in int matIndex;
layout(location = 1) in vec2 fragTexCoord;
layout(location = 2) in vec3 fragNormal;
layout(location = 3) in vec3 viewDir;
layout(location = 4) in vec3 worldPos;
// Outgoing
layout(location = 0) out vec4 outColor;
// Buffers
layout(binding = 1, scalar) buffer MatColorBufferObject { WaveFrontMaterial m[]; } materials[];
layout(binding = 2, scalar) buffer ScnDesc { sceneDesc i[]; } scnDesc;
layout(binding = 3) uniform sampler2D[] textureSamplers;
layout(binding = 4, scalar) buffer MatIndex { int i[]; } matIdx[];
layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object
layout(buffer_reference, scalar) buffer Indices {uint i[]; }; // Triangle indices
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(binding = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
layout(binding = 2) uniform sampler2D[] textureSamplers;
// clang-format on
void main()
{
// Object of this instance
int objId = scnDesc.i[pushC.instanceId].objId;
// Material of the object
int matIndex = matIdx[nonuniformEXT(objId)].i[gl_PrimitiveID];
WaveFrontMaterial mat = materials[nonuniformEXT(objId)].m[matIndex];
SceneDesc objResource = sceneDesc.i[pushC.instanceId];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
int matIndex = matIndices.i[gl_PrimitiveID];
WaveFrontMaterial mat = materials.m[matIndex];
vec3 N = normalize(fragNormal);
@ -84,7 +89,7 @@ void main()
vec3 diffuse = computeDiffuse(mat, L, N);
if(mat.textureId >= 0)
{
int txtOffset = scnDesc.i[pushC.instanceId].txtOffset;
int txtOffset = sceneDesc.i[pushC.instanceId].txtOffset;
uint txtId = txtOffset + mat.textureId;
vec3 diffuseTxt = texture(textureSamplers[nonuniformEXT(txtId)], fragTexCoord).xyz;
diffuse *= diffuseTxt;

View file

@ -16,9 +16,9 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 450
layout (location = 0) out vec2 outUV;
layout(location = 0) out vec2 outUV;
out gl_PerVertex
@ -29,6 +29,6 @@ out gl_PerVertex
void main()
{
outUV = vec2((gl_VertexIndex << 1) & 2, gl_VertexIndex & 2);
outUV = vec2((gl_VertexIndex << 1) & 2, gl_VertexIndex & 2);
gl_Position = vec4(outUV * 2.0f - 1.0f, 1.0f, 1.0f);
}

View file

@ -16,7 +16,7 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 450
layout(location = 0) in vec2 outUV;
layout(location = 0) out vec4 fragColor;

View file

@ -16,12 +16,16 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
@ -31,16 +35,13 @@ hitAttributeEXT vec2 attribs;
layout(location = 0) rayPayloadInEXT hitPayload prd;
layout(location = 1) rayPayloadEXT bool isShadowed;
layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object
layout(buffer_reference, scalar) buffer Indices {ivec3 i[]; }; // Triangle indices
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 2, set = 1, scalar) buffer ScnDesc { sceneDesc i[]; } scnDesc;
layout(binding = 5, set = 1, scalar) buffer Vertices { Vertex v[]; } vertices[];
layout(binding = 6, set = 1) buffer Indices { uint i[]; } indices[];
layout(binding = 1, set = 1, scalar) buffer MatColorBufferObject { WaveFrontMaterial m[]; } materials[];
layout(binding = 3, set = 1) uniform sampler2D textureSamplers[];
layout(binding = 4, set = 1) buffer MatIndexColorBuffer { int i[]; } matIndex[];
layout(binding = 1, set = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
layout(binding = 2, set = 1) uniform sampler2D textureSamplers[];
// clang-format on
layout(push_constant) uniform Constants
@ -55,30 +56,33 @@ pushC;
void main()
{
// Object of this instance
uint objId = scnDesc.i[gl_InstanceCustomIndexEXT].objId;
// Object data
SceneDesc objResource = sceneDesc.i[gl_InstanceCustomIndexEXT];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
Indices indices = Indices(objResource.indexAddress);
Vertices vertices = Vertices(objResource.vertexAddress);
// Indices of the triangle
ivec3 ind = ivec3(indices[nonuniformEXT(objId)].i[3 * gl_PrimitiveID + 0], //
indices[nonuniformEXT(objId)].i[3 * gl_PrimitiveID + 1], //
indices[nonuniformEXT(objId)].i[3 * gl_PrimitiveID + 2]); //
ivec3 ind = indices.i[gl_PrimitiveID];
// Vertex of the triangle
Vertex v0 = vertices[nonuniformEXT(objId)].v[ind.x];
Vertex v1 = vertices[nonuniformEXT(objId)].v[ind.y];
Vertex v2 = vertices[nonuniformEXT(objId)].v[ind.z];
Vertex v0 = vertices.v[ind.x];
Vertex v1 = vertices.v[ind.y];
Vertex v2 = vertices.v[ind.z];
const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y);
// Computing the normal at hit position
vec3 normal = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z;
// Transforming the normal to world space
normal = normalize(vec3(scnDesc.i[gl_InstanceCustomIndexEXT].transfoIT * vec4(normal, 0.0)));
normal = normalize(vec3(sceneDesc.i[gl_InstanceCustomIndexEXT].transfoIT * vec4(normal, 0.0)));
// Computing the coordinates of the hit position
vec3 worldPos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z;
// Transforming the position to world space
worldPos = vec3(scnDesc.i[gl_InstanceCustomIndexEXT].transfo * vec4(worldPos, 1.0));
worldPos = vec3(sceneDesc.i[gl_InstanceCustomIndexEXT].transfo * vec4(worldPos, 1.0));
// Vector toward the light
vec3 L;
@ -98,17 +102,16 @@ void main()
}
// Material of the object
int matIdx = matIndex[nonuniformEXT(objId)].i[gl_PrimitiveID];
WaveFrontMaterial mat = materials[nonuniformEXT(objId)].m[matIdx];
int matIdx = matIndices.i[gl_PrimitiveID];
WaveFrontMaterial mat = materials.m[matIdx];
// Diffuse
vec3 diffuse = computeDiffuse(mat, L, normal);
if(mat.textureId >= 0)
{
uint txtId = mat.textureId + scnDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
vec2 texCoord =
v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z;
uint txtId = mat.textureId + sceneDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z;
diffuse *= texture(textureSamplers[nonuniformEXT(txtId)], texCoord).xyz;
}
@ -122,9 +125,8 @@ void main()
float tMax = lightDistance;
vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
vec3 rayDir = L;
uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT
| gl_RayFlagsSkipClosestHitShaderEXT;
isShadowed = true;
uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT | gl_RayFlagsSkipClosestHitShaderEXT;
isShadowed = true;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask

View file

@ -16,7 +16,7 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_GOOGLE_include_directive : enable

View file

@ -16,17 +16,19 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
layout(binding = 7, set = 1, scalar) buffer allSpheres_
layout(binding = 3, set = 1, scalar) buffer allSpheres_
{
Sphere allSpheres[];
};

View file

@ -16,7 +16,7 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_GOOGLE_include_directive : enable

View file

@ -16,12 +16,15 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
@ -31,16 +34,15 @@ hitAttributeEXT vec2 attribs;
layout(location = 0) rayPayloadInEXT hitPayload prd;
layout(location = 1) rayPayloadEXT bool isShadowed;
layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object
layout(buffer_reference, scalar) buffer Indices {uint i[]; }; // Triangle indices
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 2, set = 1, scalar) buffer ScnDesc { sceneDesc i[]; } scnDesc;
layout(binding = 5, set = 1, scalar) buffer Vertices { Vertex v[]; } vertices[];
layout(binding = 6, set = 1) buffer Indices { uint i[]; } indices[];
layout(binding = 1, set = 1, scalar) buffer MatColorBufferObject { WaveFrontMaterial m[]; } materials[];
layout(binding = 3, set = 1) uniform sampler2D textureSamplers[];
layout(binding = 4, set = 1) buffer MatIndexColorBuffer { int i[]; } matIndex[];
layout(binding = 7, set = 1, scalar) buffer allSpheres_ {Sphere i[];} allSpheres;
layout(binding = 1, set = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
layout(binding = 2, set = 1) uniform sampler2D textureSamplers[];
layout(binding = 3, set = 1, scalar) buffer allSpheres_ {Sphere i[];} allSpheres;
// clang-format on
@ -56,6 +58,11 @@ pushC;
void main()
{
// Object data
SceneDesc objResource = sceneDesc.i[gl_InstanceCustomIndexEXT];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
vec3 worldPos = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
Sphere instance = allSpheres.i[gl_PrimitiveID];
@ -68,9 +75,8 @@ void main()
{
vec3 absN = abs(normal);
float maxC = max(max(absN.x, absN.y), absN.z);
normal = (maxC == absN.x) ?
vec3(sign(normal.x), 0, 0) :
(maxC == absN.y) ? vec3(0, sign(normal.y), 0) : vec3(0, 0, sign(normal.z));
normal = (maxC == absN.x) ? vec3(sign(normal.x), 0, 0) :
(maxC == absN.y) ? vec3(0, sign(normal.y), 0) : vec3(0, 0, sign(normal.z));
}
// Vector toward the light
@ -91,8 +97,8 @@ void main()
}
// Material of the object
int matIdx = matIndex[nonuniformEXT(gl_InstanceID)].i[gl_PrimitiveID];
WaveFrontMaterial mat = materials[nonuniformEXT(gl_InstanceID)].m[matIdx];
int matIdx = matIndices.i[gl_PrimitiveID];
WaveFrontMaterial mat = materials.m[matIdx];
// Diffuse
vec3 diffuse = computeDiffuse(mat, L, normal);
@ -106,9 +112,8 @@ void main()
float tMax = lightDistance;
vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
vec3 rayDir = L;
uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT
| gl_RayFlagsSkipClosestHitShaderEXT;
isShadowed = true;
uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT | gl_RayFlagsSkipClosestHitShaderEXT;
isShadowed = true;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask

View file

@ -16,7 +16,7 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 460
#extension GL_EXT_ray_tracing : require

View file

@ -16,16 +16,18 @@
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 450
#extension GL_ARB_separate_shader_objects : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#include "wavefront.glsl"
// clang-format off
layout(binding = 2, set = 0, scalar) buffer ScnDesc { sceneDesc i[]; } scnDesc;
layout(binding = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
// clang-format on
layout(binding = 0) uniform UniformBufferObject
@ -65,8 +67,8 @@ out gl_PerVertex
void main()
{
mat4 objMatrix = scnDesc.i[pushC.instanceId].transfo;
mat4 objMatrixIT = scnDesc.i[pushC.instanceId].transfoIT;
mat4 objMatrix = sceneDesc.i[pushC.instanceId].transfo;
mat4 objMatrixIT = sceneDesc.i[pushC.instanceId].transfoIT;
vec3 origin = vec3(ubo.viewI * vec4(0, 0, 0, 1));

View file

@ -39,12 +39,16 @@ struct WaveFrontMaterial
int textureId;
};
struct sceneDesc
struct SceneDesc
{
int objId;
int txtOffset;
mat4 transfo;
mat4 transfoIT;
mat4 transfo;
mat4 transfoIT;
int objId;
int txtOffset;
uint64_t vertexAddress;
uint64_t indexAddress;
uint64_t materialAddress;
uint64_t materialIndexAddress;
};