Refactoring
This commit is contained in:
parent
3e399adf0a
commit
d90ce79135
222 changed files with 9045 additions and 5734 deletions
|
|
@ -1,8 +1,142 @@
|
|||
# NVIDIA Vulkan Ray Tracing Tutorial
|
||||
|
||||
This example is a simple OBJ viewer in Vulkan, without any ray tracing functionality.
|
||||
It is the starting point of the ray tracing tutorial, the source of the application in which ray tracing will be added.
|
||||
This sample is a simple OBJ viewer in Vulkan, without any ray tracing functionality.
|
||||
It is the starting point of the [ray tracing tutorial](https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR/),
|
||||
the source of the application where ray tracing will be added.
|
||||

|
||||
|
||||
## [**Start Ray Tracing Tutorial**](https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR/)
|
||||
Before starting the tutorial and adding what is necessary to enable ray tracing, here is a brief description of how this basic example was created.
|
||||
## Structure
|
||||
|
||||

|
||||
* main.cpp : creates a Vulkan context, call for loading OBJ files, drawing loop
|
||||
* hello_vulkan.[cpp|h]: example class that loads and store OBJ in Vulkan buffers, load textures, creates pipelines and render the scene
|
||||
* [nvvk](https://github.com/nvpro-samples/nvpro_core/tree/master/nvvk): library of independent Vulkan helpers.
|
||||
|
||||
## Overview
|
||||
|
||||
The following describes the function calls in main(). The helpers will not be described here, but following the link should give more details on how they work.
|
||||
|
||||
### Window and Vulkan Setup
|
||||
|
||||
* Creates a window using [GLFW](https://www.glfw.org/).
|
||||
* Creates a Vulkan context using the [`nvvk::Context`](https://github.com/nvpro-samples/nvpro_core/tree/master/nvvk#context_vkhpp)
|
||||
helper. The result is a `VkInstance`, `VkDevice`, `VkPhisicalDevice`, the queues and the extensions initialized.
|
||||
* The window was created, but not the surface to draw in this window. This is done using the information from `VkInstance` and `GLFWwindow`. The
|
||||
`VkSurfaceKHR` will be used to find the proper queue.
|
||||
|
||||
### Sample Setup
|
||||
|
||||
* Hello vulkan setup:
|
||||
* [base] Keep a copy of `VkInstance`, `VkDevice`, `VkPhysicalDevice` and graphics Queue Index.
|
||||
* [base] Create a command pool
|
||||
* Initialize the [Vulkan resource allocator](https://github.com/nvpro-samples/nvpro_core/tree/master/nvvk#resourceallocator_vkhpp) (nvvk::alloc).
|
||||
* Create Swapchain [base]:
|
||||
* Using the base class method and the help of [`nvvk::Swapchain`](https://github.com/nvpro-samples/nvpro_core/tree/master/nvvk#swapchain_vkhpp),
|
||||
initialize the swapchain for rendering onto the surface.
|
||||
* Finds the surface color and depth format.
|
||||
* Create *n* `VkFence` for synchronization.
|
||||
* Create depth buffer [base]: depth buffer image with the format query in the swapchain
|
||||
* Create render pass [base]:
|
||||
* Simple render pass, with two attachments: color and depth
|
||||
* Using swapchain color and depth format.
|
||||
* Create frame buffers [base]:
|
||||
* Create *n images* of the number returned by the swapchain
|
||||
* Create as many frame buffers and attach the images
|
||||
* Initialize GUI [base]: we are using [Dear ImGui](https://github.com/ocornut/imgui) and
|
||||
this is doing the initialization for Vulkan.
|
||||
* Loading [Wavefront .obj file](https://en.wikipedia.org/wiki/Wavefront_.obj_file):
|
||||
* This is a very simple format, but it allows us to make manual modifications in the file, to load several .obj files and to combine them to obtain a more complex scene. We can also easily create several instances of the loaded objects.
|
||||
* Loading the .obj is done through the [ObjLoader](https://github.com/nvpro-samples/vk_raytracing_tutorial_KHR/blob/3e399adf0a3e991795fbdf91e0e6c23b9f492bb8/common/obj_loader.cpp#L26) which is using [tinyobjloader](https://github.com/tinyobjloader/tinyobjloader).
|
||||
* All vertices are in the form of: position, normal, color, texture coordinates
|
||||
* Every 3 vertex indices are creating a triangle.
|
||||
* Every triangle has an index of the material it is using.
|
||||
* There are M materials and T textures.
|
||||
* We allocate buffers and staging the transfer to the GPU using our resource allocator.
|
||||
* We create an instance of the loaded model.
|
||||
* :warning: We keep the addresses of the created buffers and append this to a vector of `ObjDesc`, which allows easy access to the model information from a shader.
|
||||
|
||||
### Offscreen image & Graphic Pipeline
|
||||
|
||||
We have a swapchain and window frame buffers, but we will not render the scene directly to them. Instead, we will render to an RGBA32F image, and then render that image to a full screen triangle using a tone mapper. We could have rendered directly to one of the swapchain framebuffers and applied a tone mapper, but this separation will be very useful for rendering G-Buffers and doing something similar with ray tracing.
|
||||
|
||||
* Create offscreen render:
|
||||
* Create a color and depth image, format are VK_FORMAT_R32G32B32A32_SFLOAT and best depth for the physical device using [`nvvk::findDepthFormat`](https://github.com/nvpro-samples/nvpro_core/tree/master/nvvk#renderpasses_vkhpp).
|
||||
* Create a render pass to render using those images [`nvvk::createRenderPass`](https://github.com/nvpro-samples/nvpro_core/tree/master/nvvk#renderpasses_vkhpp).
|
||||
* Create a frame buffer, to use as a target when rendering offline.
|
||||
* Create descriptor set layout:
|
||||
* Using the [`nvvk::DescriptorSetBindings`](https://github.com/nvpro-samples/nvpro_core/tree/master/nvvk#class-nvvkdescriptorsetbindings), describing the resources that will be used in the vertex and fragment shader.
|
||||
* Create graphic pipeline:
|
||||
* Using [`nvvk::GraphicsPipelineGeneratorCombined`](https://github.com/nvpro-samples/nvpro_core/tree/master/nvvk#class-nvvkgraphicspipelinegeneratorcombined)
|
||||
* Load both vertex and fragment SpirV shaders
|
||||
* Describe the vertex attributes: pos, nrm, color, uv
|
||||
* Create uniform buffer:
|
||||
* The uniform buffer is holding global scene information and is updated at each frame.
|
||||
* The information in this sample consist of camera matrices and will be
|
||||
updated in the drawing loop using `updateUniformBuffer()`.
|
||||
* Create Obj description buffer:
|
||||
* When loading .obj, we stored the addresses of the OBJ buffers.
|
||||
* If we have loaded many .obj, the array will be as large as the number of obj loaded.
|
||||
* Each instance has the index of the OBJ, therefore the information of the model will be easily retrievable in the shader.
|
||||
* This function creates the buffer holding the vector of `ObjDesc`.
|
||||
* Update descriptor set:
|
||||
* The descriptor set has been created, but here we are writing the information, meaning all the buffers and textures we have created.
|
||||
|
||||
At this point, the OBJs are loaded and their information is uploaded to the GPU. The graphic pipeline and the information describing the resources are also created.
|
||||
|
||||
### Post Pipeline
|
||||
|
||||
We need to create a "post pipeline". This is specific to the raster of this sample. As mentioned before, we render in a full screen triangle, the result of the raster and apply a tonemapper. This step will be rendered directly into the framebuffer of the swapchain.
|
||||
|
||||

|
||||
|
||||
* Create post descriptor:
|
||||
* Adding the image input (result of rendering)
|
||||
* Create post pipeline:
|
||||
* Passtrough vertex shader (full screen triangle)
|
||||
* Fragment tone-mapper shader
|
||||
* Update post descriptor:
|
||||
* Writing the image (RGB32F) address
|
||||
|
||||
At this point we are ready to start the rendering loop.
|
||||
|
||||
* Setup Glfw callback:
|
||||
* Our base class has many functions to react on Glfw, such as change of window size, mouse and keyboard inputs.
|
||||
* All callback functions are virtual, which allow to override the base functionality, but for most there isn't anything to do.
|
||||
* Except for `onResize`, since we render to an intermediate image (RGB32F), this image will need to be re-created with the new size and the post pipeline will need the address of this image. Therefore, there is an overload of this function.
|
||||
|
||||
### Rendering Loop
|
||||
|
||||
* Render indefinitely until Glfw receive a close action
|
||||
* Glfw pulling events
|
||||
* Imgui new frame and rendering (not drawing)
|
||||
* Prepare Frame
|
||||
* This is part of the swapchain, we can have a double or triple buffer and
|
||||
this call will be waiting (fence) to make sure that one swapchain frame buffer
|
||||
is available.
|
||||
* Get current frame
|
||||
* Depending if we have a double or triple buffer, it will return: 0 or 1, or 0, 1 or 2.
|
||||
* Resources in the base class exist in that amount: color images, frame buffer, command buffer, fence
|
||||
* Get the command buffer for the current frame (better to re-use command buffers than creating new ones)
|
||||
* Update the uniform buffer:
|
||||
* Push the current camera matrices
|
||||
|
||||
#### Offscreen
|
||||
|
||||
* Start offscreen rendering pass
|
||||
* We will be rendering (raster) in the RGBA32F image using the offscreen render pass and frame buffer.
|
||||
* Rasterize
|
||||
* This is rasterizing the entire scene, all instances of each object.
|
||||
|
||||
#### Final
|
||||
|
||||
Start another rendering, this time in the swapchain frame buffer
|
||||
|
||||
* Use the base class render pass
|
||||
* Use the swapchain frame buffer
|
||||
* Render a full-screen triangle with the raster image and tone-mapping it.
|
||||
* Actually rendering Imgui in Vulkan
|
||||
* Submit the frame for execution and display
|
||||
|
||||
### Clean up
|
||||
|
||||
The rest is clean up all allocations
|
||||
|
|
|
|||
|
|
@ -40,14 +40,6 @@
|
|||
extern std::vector<std::string> defaultSearchPaths;
|
||||
|
||||
|
||||
// Holding the camera matrices
|
||||
struct CameraMatrices
|
||||
{
|
||||
nvmath::mat4f view;
|
||||
nvmath::mat4f proj;
|
||||
nvmath::mat4f viewInverse;
|
||||
};
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Keep the handle on the device
|
||||
// Initialize the tool to do all our allocations: buffers, images
|
||||
|
|
@ -67,14 +59,17 @@ void HelloVulkan::updateUniformBuffer(const VkCommandBuffer& cmdBuf)
|
|||
{
|
||||
// Prepare new UBO contents on host.
|
||||
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
|
||||
CameraMatrices hostUBO = {};
|
||||
hostUBO.view = CameraManip.getMatrix();
|
||||
hostUBO.proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
|
||||
// hostUBO.proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
|
||||
hostUBO.viewInverse = nvmath::invert(hostUBO.view);
|
||||
GlobalUniforms hostUBO = {};
|
||||
const auto& view = CameraManip.getMatrix();
|
||||
const auto& proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
|
||||
// proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
|
||||
|
||||
hostUBO.viewProj = proj * view;
|
||||
hostUBO.viewInverse = nvmath::invert(view);
|
||||
hostUBO.projInverse = nvmath::invert(proj);
|
||||
|
||||
// UBO on the device, and what stages access it.
|
||||
VkBuffer deviceUBO = m_cameraMat.buffer;
|
||||
VkBuffer deviceUBO = m_bGlobals.buffer;
|
||||
auto uboUsageStages = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT;
|
||||
|
||||
// Ensure that the modified UBO is not visible to previous frames.
|
||||
|
|
@ -90,7 +85,7 @@ void HelloVulkan::updateUniformBuffer(const VkCommandBuffer& cmdBuf)
|
|||
|
||||
// Schedule the host-to-device upload. (hostUBO is copied into the cmd
|
||||
// buffer so it is okay to deallocate when the function returns).
|
||||
vkCmdUpdateBuffer(cmdBuf, m_cameraMat.buffer, 0, sizeof(CameraMatrices), &hostUBO);
|
||||
vkCmdUpdateBuffer(cmdBuf, m_bGlobals.buffer, 0, sizeof(GlobalUniforms), &hostUBO);
|
||||
|
||||
// Making sure the updated UBO will be visible.
|
||||
VkBufferMemoryBarrier afterBarrier{VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER};
|
||||
|
|
@ -110,12 +105,15 @@ void HelloVulkan::createDescriptorSetLayout()
|
|||
{
|
||||
auto nbTxt = static_cast<uint32_t>(m_textures.size());
|
||||
|
||||
// Camera matrices (binding = 0)
|
||||
m_descSetLayoutBind.addBinding(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT);
|
||||
// Scene description (binding = 1)
|
||||
m_descSetLayoutBind.addBinding(1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
// Textures (binding = 2)
|
||||
m_descSetLayoutBind.addBinding(2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, nbTxt, VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
// Camera matrices
|
||||
m_descSetLayoutBind.addBinding(SceneBindings::eGlobals, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1,
|
||||
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_RAYGEN_BIT_KHR);
|
||||
// Obj descriptions
|
||||
m_descSetLayoutBind.addBinding(SceneBindings::eObjDescs, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
|
||||
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
|
||||
// Textures
|
||||
m_descSetLayoutBind.addBinding(SceneBindings::eTextures, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, nbTxt,
|
||||
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
|
||||
|
||||
|
||||
m_descSetLayout = m_descSetLayoutBind.createLayout(m_device);
|
||||
|
|
@ -131,11 +129,11 @@ void HelloVulkan::updateDescriptorSet()
|
|||
std::vector<VkWriteDescriptorSet> writes;
|
||||
|
||||
// Camera matrices and scene description
|
||||
VkDescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
|
||||
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 0, &dbiUnif));
|
||||
VkDescriptorBufferInfo dbiUnif{m_bGlobals.buffer, 0, VK_WHOLE_SIZE};
|
||||
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, SceneBindings::eGlobals, &dbiUnif));
|
||||
|
||||
VkDescriptorBufferInfo dbiSceneDesc{m_sceneDesc.buffer, 0, VK_WHOLE_SIZE};
|
||||
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 1, &dbiSceneDesc));
|
||||
VkDescriptorBufferInfo dbiSceneDesc{m_bObjDesc.buffer, 0, VK_WHOLE_SIZE};
|
||||
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, SceneBindings::eObjDescs, &dbiSceneDesc));
|
||||
|
||||
// All texture samplers
|
||||
std::vector<VkDescriptorImageInfo> diit;
|
||||
|
|
@ -143,7 +141,7 @@ void HelloVulkan::updateDescriptorSet()
|
|||
{
|
||||
diit.emplace_back(texture.descriptor);
|
||||
}
|
||||
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 2, diit.data()));
|
||||
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, SceneBindings::eTextures, diit.data()));
|
||||
|
||||
// Writing the information
|
||||
vkUpdateDescriptorSets(m_device, static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
|
||||
|
|
@ -155,7 +153,7 @@ void HelloVulkan::updateDescriptorSet()
|
|||
//
|
||||
void HelloVulkan::createGraphicsPipeline()
|
||||
{
|
||||
VkPushConstantRange pushConstantRanges = {VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(ObjPushConstant)};
|
||||
VkPushConstantRange pushConstantRanges = {VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushConstantRaster)};
|
||||
|
||||
// Creating the Pipeline Layout
|
||||
VkPipelineLayoutCreateInfo createInfo{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
|
||||
|
|
@ -213,30 +211,35 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
|
|||
model.indexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_indices, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | flag);
|
||||
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
|
||||
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
|
||||
// Creates all textures found
|
||||
uint32_t txtOffset = static_cast<uint32_t>(m_textures.size());
|
||||
// Creates all textures found and find the offset for this model
|
||||
auto txtOffset = static_cast<uint32_t>(m_textures.size());
|
||||
createTextureImages(cmdBuf, loader.m_textures);
|
||||
cmdBufGet.submitAndWait(cmdBuf);
|
||||
m_alloc.finalizeAndReleaseStaging();
|
||||
|
||||
std::string objNb = std::to_string(m_objModel.size());
|
||||
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb).c_str()));
|
||||
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb).c_str()));
|
||||
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb).c_str()));
|
||||
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb).c_str()));
|
||||
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb)));
|
||||
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb)));
|
||||
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb)));
|
||||
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb)));
|
||||
|
||||
// Keeping transformation matrix of the instance
|
||||
ObjInstance instance;
|
||||
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
|
||||
instance.transform = transform;
|
||||
instance.transformIT = nvmath::transpose(nvmath::invert(transform));
|
||||
instance.txtOffset = txtOffset;
|
||||
instance.vertices = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
|
||||
instance.indices = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
|
||||
instance.materials = nvvk::getBufferDeviceAddress(m_device, model.matColorBuffer.buffer);
|
||||
instance.materialIndices = nvvk::getBufferDeviceAddress(m_device, model.matIndexBuffer.buffer);
|
||||
instance.transform = transform;
|
||||
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
|
||||
m_instances.push_back(instance);
|
||||
|
||||
// Creating information for device access
|
||||
ObjDesc desc;
|
||||
desc.txtOffset = txtOffset;
|
||||
desc.vertexAddress = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
|
||||
desc.indexAddress = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
|
||||
desc.materialAddress = nvvk::getBufferDeviceAddress(m_device, model.matColorBuffer.buffer);
|
||||
desc.materialIndexAddress = nvvk::getBufferDeviceAddress(m_device, model.matIndexBuffer.buffer);
|
||||
|
||||
// Keeping the obj host model and device description
|
||||
m_objModel.emplace_back(model);
|
||||
m_objInstance.emplace_back(instance);
|
||||
m_objDesc.emplace_back(desc);
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -246,9 +249,9 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
|
|||
//
|
||||
void HelloVulkan::createUniformBuffer()
|
||||
{
|
||||
m_cameraMat = m_alloc.createBuffer(sizeof(CameraMatrices), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
||||
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
||||
m_debug.setObjectName(m_cameraMat.buffer, "cameraMat");
|
||||
m_bGlobals = m_alloc.createBuffer(sizeof(GlobalUniforms), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
||||
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
||||
m_debug.setObjectName(m_bGlobals.buffer, "Globals");
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
|
|
@ -257,15 +260,15 @@ void HelloVulkan::createUniformBuffer()
|
|||
// - Transformation
|
||||
// - Offset for texture
|
||||
//
|
||||
void HelloVulkan::createSceneDescriptionBuffer()
|
||||
void HelloVulkan::createObjDescriptionBuffer()
|
||||
{
|
||||
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
|
||||
|
||||
auto cmdBuf = cmdGen.createCommandBuffer();
|
||||
m_sceneDesc = m_alloc.createBuffer(cmdBuf, m_objInstance, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
|
||||
m_bObjDesc = m_alloc.createBuffer(cmdBuf, m_objDesc, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
|
||||
cmdGen.submitAndWait(cmdBuf);
|
||||
m_alloc.finalizeAndReleaseStaging();
|
||||
m_debug.setObjectName(m_sceneDesc.buffer, "sceneDesc");
|
||||
m_debug.setObjectName(m_bObjDesc.buffer, "ObjDescs");
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
|
|
@ -351,8 +354,8 @@ void HelloVulkan::destroyResources()
|
|||
vkDestroyDescriptorPool(m_device, m_descPool, nullptr);
|
||||
vkDestroyDescriptorSetLayout(m_device, m_descSetLayout, nullptr);
|
||||
|
||||
m_alloc.destroy(m_cameraMat);
|
||||
m_alloc.destroy(m_sceneDesc);
|
||||
m_alloc.destroy(m_bGlobals);
|
||||
m_alloc.destroy(m_bObjDesc);
|
||||
|
||||
for(auto& m : m_objModel)
|
||||
{
|
||||
|
|
@ -397,14 +400,14 @@ void HelloVulkan::rasterize(const VkCommandBuffer& cmdBuf)
|
|||
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1, &m_descSet, 0, nullptr);
|
||||
|
||||
|
||||
for(int i = 0; i < m_objInstance.size(); ++i)
|
||||
for(const HelloVulkan::ObjInstance& inst : m_instances)
|
||||
{
|
||||
auto& inst = m_objInstance[i];
|
||||
auto& model = m_objModel[inst.objIndex];
|
||||
m_pushConstant.instanceId = i; // Telling which instance is drawn
|
||||
auto& model = m_objModel[inst.objIndex];
|
||||
m_pcRaster.objIndex = inst.objIndex; // Telling which object is drawn
|
||||
m_pcRaster.modelMatrix = inst.transform;
|
||||
|
||||
vkCmdPushConstants(cmdBuf, m_pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0,
|
||||
sizeof(ObjPushConstant), &m_pushConstant);
|
||||
sizeof(PushConstantRaster), &m_pcRaster);
|
||||
vkCmdBindVertexBuffers(cmdBuf, 0, 1, &model.vertexBuffer.buffer, &offset);
|
||||
vkCmdBindIndexBuffer(cmdBuf, model.indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
vkCmdDrawIndexed(cmdBuf, model.nbIndices, 1, 0, 0, 0);
|
||||
|
|
|
|||
|
|
@ -24,6 +24,7 @@
|
|||
#include "nvvk/descriptorsets_vk.hpp"
|
||||
#include "nvvk/memallocator_dma_vk.hpp"
|
||||
#include "nvvk/resourceallocator_vk.hpp"
|
||||
#include "shaders/host_device.h"
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Simple rasterizer of OBJ objects
|
||||
|
|
@ -41,7 +42,7 @@ public:
|
|||
void loadModel(const std::string& filename, nvmath::mat4f transform = nvmath::mat4f(1));
|
||||
void updateDescriptorSet();
|
||||
void createUniformBuffer();
|
||||
void createSceneDescriptionBuffer();
|
||||
void createObjDescriptionBuffer();
|
||||
void createTextureImages(const VkCommandBuffer& cmdBuf, const std::vector<std::string>& textures);
|
||||
void updateUniformBuffer(const VkCommandBuffer& cmdBuf);
|
||||
void onResize(int /*w*/, int /*h*/) override;
|
||||
|
|
@ -59,32 +60,27 @@ public:
|
|||
nvvk::Buffer matIndexBuffer; // Device buffer of array of 'Wavefront material'
|
||||
};
|
||||
|
||||
// Instance of the OBJ
|
||||
struct ObjInstance
|
||||
{
|
||||
nvmath::mat4f transform{1}; // Position of the instance
|
||||
nvmath::mat4f transformIT{1}; // Inverse transpose
|
||||
uint32_t objIndex{0}; // Reference to the `m_objModel`
|
||||
uint32_t txtOffset{0}; // Offset in `m_textures`
|
||||
VkDeviceAddress vertices;
|
||||
VkDeviceAddress indices;
|
||||
VkDeviceAddress materials;
|
||||
VkDeviceAddress materialIndices;
|
||||
nvmath::mat4f transform; // Matrix of the instance
|
||||
uint32_t objIndex{0}; // Model index reference
|
||||
};
|
||||
|
||||
|
||||
// Information pushed at each draw call
|
||||
struct ObjPushConstant
|
||||
{
|
||||
nvmath::vec3f lightPosition{10.f, 15.f, 8.f};
|
||||
int instanceId{0}; // To retrieve the transformation matrix
|
||||
float lightIntensity{100.f};
|
||||
int lightType{0}; // 0: point, 1: infinite
|
||||
PushConstantRaster m_pcRaster{
|
||||
{1}, // Identity matrix
|
||||
{10.f, 15.f, 8.f}, // light position
|
||||
0, // instance Id
|
||||
100.f, // light intensity
|
||||
0 // light type
|
||||
};
|
||||
ObjPushConstant m_pushConstant;
|
||||
|
||||
// Array of objects and instances in the scene
|
||||
std::vector<ObjModel> m_objModel;
|
||||
std::vector<ObjInstance> m_objInstance;
|
||||
std::vector<ObjModel> m_objModel; // Model on host
|
||||
std::vector<ObjDesc> m_objDesc; // Model description for device access
|
||||
std::vector<ObjInstance> m_instances; // Scene model instances
|
||||
|
||||
|
||||
// Graphic pipeline
|
||||
VkPipelineLayout m_pipelineLayout;
|
||||
|
|
@ -94,8 +90,8 @@ public:
|
|||
VkDescriptorSetLayout m_descSetLayout;
|
||||
VkDescriptorSet m_descSet;
|
||||
|
||||
nvvk::Buffer m_cameraMat; // Device-Host of the camera matrices
|
||||
nvvk::Buffer m_sceneDesc; // Device buffer of the OBJ instances
|
||||
nvvk::Buffer m_bGlobals; // Device-Host of the camera matrices
|
||||
nvvk::Buffer m_bObjDesc; // Device buffer of the OBJ descriptions
|
||||
|
||||
std::vector<nvvk::Texture> m_textures; // vector of all textures of the scene
|
||||
|
||||
|
|
@ -104,7 +100,7 @@ public:
|
|||
nvvk::DebugUtil m_debug; // Utility to name objects
|
||||
|
||||
|
||||
// #Post
|
||||
// #Post - Draw the rendered image on a quad using a tonemapper
|
||||
void createOffscreenRender();
|
||||
void createPostPipeline();
|
||||
void createPostDescriptor();
|
||||
|
|
|
|||
BIN
ray_tracing__before/images/base_pipeline.png
Normal file
BIN
ray_tracing__before/images/base_pipeline.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 16 KiB |
BIN
ray_tracing__before/images/vk_ray_tracing__before.png
Normal file
BIN
ray_tracing__before/images/vk_ray_tracing__before.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 28 KiB |
|
|
@ -56,12 +56,12 @@ void renderUI(HelloVulkan& helloVk)
|
|||
ImGuiH::CameraWidget();
|
||||
if(ImGui::CollapsingHeader("Light"))
|
||||
{
|
||||
ImGui::RadioButton("Point", &helloVk.m_pushConstant.lightType, 0);
|
||||
ImGui::RadioButton("Point", &helloVk.m_pcRaster.lightType, 0);
|
||||
ImGui::SameLine();
|
||||
ImGui::RadioButton("Infinite", &helloVk.m_pushConstant.lightType, 1);
|
||||
ImGui::RadioButton("Infinite", &helloVk.m_pcRaster.lightType, 1);
|
||||
|
||||
ImGui::SliderFloat3("Position", &helloVk.m_pushConstant.lightPosition.x, -20.f, 20.f);
|
||||
ImGui::SliderFloat("Intensity", &helloVk.m_pushConstant.lightIntensity, 0.f, 150.f);
|
||||
ImGui::SliderFloat3("Position", &helloVk.m_pcRaster.lightPosition.x, -20.f, 20.f);
|
||||
ImGui::SliderFloat("Intensity", &helloVk.m_pcRaster.lightIntensity, 0.f, 150.f);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -156,7 +156,7 @@ int main(int argc, char** argv)
|
|||
helloVk.createDescriptorSetLayout();
|
||||
helloVk.createGraphicsPipeline();
|
||||
helloVk.createUniformBuffer();
|
||||
helloVk.createSceneDescriptionBuffer();
|
||||
helloVk.createObjDescriptionBuffer();
|
||||
helloVk.updateDescriptorSet();
|
||||
|
||||
helloVk.createPostDescriptor();
|
||||
|
|
|
|||
|
|
@ -29,62 +29,55 @@
|
|||
#include "wavefront.glsl"
|
||||
|
||||
|
||||
layout(push_constant) uniform shaderInformation
|
||||
layout(push_constant) uniform _PushConstantRaster
|
||||
{
|
||||
vec3 lightPosition;
|
||||
uint instanceId;
|
||||
float lightIntensity;
|
||||
int lightType;
|
||||
}
|
||||
pushC;
|
||||
PushConstantRaster pcRaster;
|
||||
};
|
||||
|
||||
// clang-format off
|
||||
// Incoming
|
||||
layout(location = 1) in vec2 fragTexCoord;
|
||||
layout(location = 2) in vec3 fragNormal;
|
||||
layout(location = 3) in vec3 viewDir;
|
||||
layout(location = 4) in vec3 worldPos;
|
||||
layout(location = 1) in vec3 i_worldPos;
|
||||
layout(location = 2) in vec3 i_worldNrm;
|
||||
layout(location = 3) in vec3 i_viewDir;
|
||||
layout(location = 4) in vec2 i_texCoord;
|
||||
// Outgoing
|
||||
layout(location = 0) out vec4 outColor;
|
||||
layout(location = 0) out vec4 o_color;
|
||||
|
||||
layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object
|
||||
layout(buffer_reference, scalar) buffer Indices {uint i[]; }; // Triangle indices
|
||||
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
|
||||
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
|
||||
|
||||
layout(binding = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
|
||||
layout(binding = 2) uniform sampler2D[] textureSamplers;
|
||||
layout(binding = eObjDescs, scalar) buffer ObjDesc_ { ObjDesc i[]; } objDesc;
|
||||
layout(binding = eTextures) uniform sampler2D[] textureSamplers;
|
||||
// clang-format on
|
||||
|
||||
|
||||
void main()
|
||||
{
|
||||
// Object of this instance
|
||||
int objId = sceneDesc.i[pushC.instanceId].objId;
|
||||
|
||||
// Material of the object
|
||||
SceneDesc objResource = sceneDesc.i[pushC.instanceId];
|
||||
ObjDesc objResource = objDesc.i[pcRaster.objIndex];
|
||||
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
|
||||
Materials materials = Materials(objResource.materialAddress);
|
||||
|
||||
int matIndex = matIndices.i[gl_PrimitiveID];
|
||||
WaveFrontMaterial mat = materials.m[matIndex];
|
||||
|
||||
vec3 N = normalize(fragNormal);
|
||||
vec3 N = normalize(i_worldNrm);
|
||||
|
||||
// Vector toward light
|
||||
vec3 L;
|
||||
float lightIntensity = pushC.lightIntensity;
|
||||
if(pushC.lightType == 0)
|
||||
float lightIntensity = pcRaster.lightIntensity;
|
||||
if(pcRaster.lightType == 0)
|
||||
{
|
||||
vec3 lDir = pushC.lightPosition - worldPos;
|
||||
vec3 lDir = pcRaster.lightPosition - i_worldPos;
|
||||
float d = length(lDir);
|
||||
lightIntensity = pushC.lightIntensity / (d * d);
|
||||
lightIntensity = pcRaster.lightIntensity / (d * d);
|
||||
L = normalize(lDir);
|
||||
}
|
||||
else
|
||||
{
|
||||
L = normalize(pushC.lightPosition - vec3(0));
|
||||
L = normalize(pcRaster.lightPosition);
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -92,15 +85,15 @@ void main()
|
|||
vec3 diffuse = computeDiffuse(mat, L, N);
|
||||
if(mat.textureId >= 0)
|
||||
{
|
||||
int txtOffset = sceneDesc.i[pushC.instanceId].txtOffset;
|
||||
int txtOffset = objDesc.i[pcRaster.objIndex].txtOffset;
|
||||
uint txtId = txtOffset + mat.textureId;
|
||||
vec3 diffuseTxt = texture(textureSamplers[nonuniformEXT(txtId)], fragTexCoord).xyz;
|
||||
vec3 diffuseTxt = texture(textureSamplers[nonuniformEXT(txtId)], i_texCoord).xyz;
|
||||
diffuse *= diffuseTxt;
|
||||
}
|
||||
|
||||
// Specular
|
||||
vec3 specular = computeSpecular(mat, viewDir, L, N);
|
||||
vec3 specular = computeSpecular(mat, i_viewDir, L, N);
|
||||
|
||||
// Result
|
||||
outColor = vec4(lightIntensity * (diffuse + specular), 1);
|
||||
o_color = vec4(lightIntensity * (diffuse + specular), 1);
|
||||
}
|
||||
|
|
|
|||
117
ray_tracing__before/shaders/host_device.h
Normal file
117
ray_tracing__before/shaders/host_device.h
Normal file
|
|
@ -0,0 +1,117 @@
|
|||
/*
|
||||
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
|
||||
#ifndef COMMON_HOST_DEVICE
|
||||
#define COMMON_HOST_DEVICE
|
||||
|
||||
#ifdef __cplusplus
|
||||
#include "nvmath/nvmath.h"
|
||||
// GLSL Type
|
||||
using vec2 = nvmath::vec2f;
|
||||
using vec3 = nvmath::vec3f;
|
||||
using vec4 = nvmath::vec4f;
|
||||
using mat4 = nvmath::mat4f;
|
||||
using uint = unsigned int;
|
||||
#endif
|
||||
|
||||
// clang-format off
|
||||
#ifdef __cplusplus // Descriptor binding helper for C++ and GLSL
|
||||
#define START_BINDING(a) enum a {
|
||||
#define END_BINDING() }
|
||||
#else
|
||||
#define START_BINDING(a) const uint
|
||||
#define END_BINDING()
|
||||
#endif
|
||||
|
||||
START_BINDING(SceneBindings)
|
||||
eGlobals = 0, // Global uniform containing camera matrices
|
||||
eObjDescs = 1, // Access to the object descriptions
|
||||
eTextures = 2 // Access to textures
|
||||
END_BINDING();
|
||||
|
||||
START_BINDING(RtxBindings)
|
||||
eTlas = 0, // Top-level acceleration structure
|
||||
eOutImage = 1 // Ray tracer output image
|
||||
END_BINDING();
|
||||
// clang-format on
|
||||
|
||||
|
||||
// Information of a obj model when referenced in a shader
|
||||
struct ObjDesc
|
||||
{
|
||||
int txtOffset; // Texture index offset in the array of textures
|
||||
uint64_t vertexAddress; // Address of the Vertex buffer
|
||||
uint64_t indexAddress; // Address of the index buffer
|
||||
uint64_t materialAddress; // Address of the material buffer
|
||||
uint64_t materialIndexAddress; // Address of the triangle material index buffer
|
||||
};
|
||||
|
||||
// Uniform buffer set at each frame
|
||||
struct GlobalUniforms
|
||||
{
|
||||
mat4 viewProj; // Camera view * projection
|
||||
mat4 viewInverse; // Camera inverse view matrix
|
||||
mat4 projInverse; // Camera inverse projection matrix
|
||||
};
|
||||
|
||||
// Push constant structure for the raster
|
||||
struct PushConstantRaster
|
||||
{
|
||||
mat4 modelMatrix; // matrix of the instance
|
||||
vec3 lightPosition;
|
||||
uint objIndex;
|
||||
float lightIntensity;
|
||||
int lightType;
|
||||
};
|
||||
|
||||
|
||||
// Push constant structure for the ray tracer
|
||||
struct PushConstantRay
|
||||
{
|
||||
vec4 clearColor;
|
||||
vec3 lightPosition;
|
||||
float lightIntensity;
|
||||
int lightType;
|
||||
};
|
||||
|
||||
struct Vertex // See ObjLoader, copy of VertexObj, could be compressed for device
|
||||
{
|
||||
vec3 pos;
|
||||
vec3 nrm;
|
||||
vec3 color;
|
||||
vec2 texCoord;
|
||||
};
|
||||
|
||||
struct WaveFrontMaterial // See ObjLoader, copy of MaterialObj, could be compressed for device
|
||||
{
|
||||
vec3 ambient;
|
||||
vec3 diffuse;
|
||||
vec3 specular;
|
||||
vec3 transmittance;
|
||||
vec3 emission;
|
||||
float shininess;
|
||||
float ior; // index of refraction
|
||||
float dissolve; // 1 == opaque; 0 == fully transparent
|
||||
int illum; // illumination model (see http://www.fileformat.info/format/material/)
|
||||
int textureId;
|
||||
};
|
||||
|
||||
|
||||
#endif
|
||||
|
|
@ -26,38 +26,26 @@
|
|||
|
||||
#include "wavefront.glsl"
|
||||
|
||||
// clang-format off
|
||||
layout(binding = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
|
||||
// clang-format on
|
||||
|
||||
layout(binding = 0) uniform UniformBufferObject
|
||||
layout(binding = 0) uniform _GlobalUniforms
|
||||
{
|
||||
mat4 view;
|
||||
mat4 proj;
|
||||
mat4 viewI;
|
||||
}
|
||||
ubo;
|
||||
GlobalUniforms uni;
|
||||
};
|
||||
|
||||
layout(push_constant) uniform shaderInformation
|
||||
layout(push_constant) uniform _PushConstantRaster
|
||||
{
|
||||
vec3 lightPosition;
|
||||
uint instanceId;
|
||||
float lightIntensity;
|
||||
int lightType;
|
||||
}
|
||||
pushC;
|
||||
PushConstantRaster pcRaster;
|
||||
};
|
||||
|
||||
layout(location = 0) in vec3 inPosition;
|
||||
layout(location = 1) in vec3 inNormal;
|
||||
layout(location = 2) in vec3 inColor;
|
||||
layout(location = 3) in vec2 inTexCoord;
|
||||
layout(location = 0) in vec3 i_position;
|
||||
layout(location = 1) in vec3 i_normal;
|
||||
layout(location = 2) in vec3 i_color;
|
||||
layout(location = 3) in vec2 i_texCoord;
|
||||
|
||||
|
||||
//layout(location = 0) flat out int matIndex;
|
||||
layout(location = 1) out vec2 fragTexCoord;
|
||||
layout(location = 2) out vec3 fragNormal;
|
||||
layout(location = 3) out vec3 viewDir;
|
||||
layout(location = 4) out vec3 worldPos;
|
||||
layout(location = 1) out vec3 o_worldPos;
|
||||
layout(location = 2) out vec3 o_worldNrm;
|
||||
layout(location = 3) out vec3 o_viewDir;
|
||||
layout(location = 4) out vec2 o_texCoord;
|
||||
|
||||
out gl_PerVertex
|
||||
{
|
||||
|
|
@ -67,16 +55,12 @@ out gl_PerVertex
|
|||
|
||||
void main()
|
||||
{
|
||||
mat4 objMatrix = sceneDesc.i[pushC.instanceId].transfo;
|
||||
mat4 objMatrixIT = sceneDesc.i[pushC.instanceId].transfoIT;
|
||||
vec3 origin = vec3(uni.viewInverse * vec4(0, 0, 0, 1));
|
||||
|
||||
vec3 origin = vec3(ubo.viewI * vec4(0, 0, 0, 1));
|
||||
o_worldPos = vec3(pcRaster.modelMatrix * vec4(i_position, 1.0));
|
||||
o_viewDir = vec3(o_worldPos - origin);
|
||||
o_texCoord = i_texCoord;
|
||||
o_worldNrm = mat3(pcRaster.modelMatrix) * i_normal;
|
||||
|
||||
worldPos = vec3(objMatrix * vec4(inPosition, 1.0));
|
||||
viewDir = vec3(worldPos - origin);
|
||||
fragTexCoord = inTexCoord;
|
||||
fragNormal = vec3(objMatrixIT * vec4(inNormal, 0.0));
|
||||
// matIndex = inMatID;
|
||||
|
||||
gl_Position = ubo.proj * ubo.view * vec4(worldPos, 1.0);
|
||||
gl_Position = uni.viewProj * vec4(o_worldPos, 1.0);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -17,41 +17,7 @@
|
|||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
struct Vertex
|
||||
{
|
||||
vec3 pos;
|
||||
vec3 nrm;
|
||||
vec3 color;
|
||||
vec2 texCoord;
|
||||
};
|
||||
|
||||
struct WaveFrontMaterial
|
||||
{
|
||||
vec3 ambient;
|
||||
vec3 diffuse;
|
||||
vec3 specular;
|
||||
vec3 transmittance;
|
||||
vec3 emission;
|
||||
float shininess;
|
||||
float ior; // index of refraction
|
||||
float dissolve; // 1 == opaque; 0 == fully transparent
|
||||
int illum; // illumination model (see http://www.fileformat.info/format/material/)
|
||||
int textureId;
|
||||
};
|
||||
|
||||
struct SceneDesc
|
||||
{
|
||||
mat4 transfo;
|
||||
mat4 transfoIT;
|
||||
int objId;
|
||||
int txtOffset;
|
||||
|
||||
uint64_t vertexAddress;
|
||||
uint64_t indexAddress;
|
||||
uint64_t materialAddress;
|
||||
uint64_t materialIndexAddress;
|
||||
};
|
||||
|
||||
#include "host_device.h"
|
||||
|
||||
vec3 computeDiffuse(WaveFrontMaterial mat, vec3 lightDir, vec3 normal)
|
||||
{
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue