Refactoring

This commit is contained in:
mklefrancois 2021-09-07 09:42:21 +02:00
parent 3e399adf0a
commit d90ce79135
222 changed files with 9045 additions and 5734 deletions

View file

@ -9,30 +9,31 @@ The simplest way of defining ray tracing pipelines is by using monolithic `VkRay
This sample introduces the [VK_KHR_pipeline_library](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_pipeline_library.html) extension to create shader libraries that can be separately compiled and reused in ray tracing pipelines. The compilation of the final pipeline is carried out on multiple threads using the [VK_KHR_deferred_host_operations](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_deferred_host_operations.html) extension.
The code below is based on the [`ray_tracing_specialization`](../ray_tracing_specialization) sample, which introduces compile-time variations of a hit shader.
The code below is based on the [`ray_tracing_specialization`](../ray_tracing_specialization) sample, which introduces compile-time variations of a hit shader.
## Pipeline Library
Using monolithic pipeline definitions all stages are compiled for each pipeline, regardless of potential reuse. The shader groups are then referenced in the Shader Binding Table using their indices:
![](images/regular_pipeline.png)
Pipeline libraries are `VkPipeline` objects that cannot be bound directly. Instead, they can be compiled once and linked into as many pipelines as necessary. The Shader Binding Table of the resulting pipeline references the shader groups of the library as if they had been appended to the groups and stages in the main `VkRayTracingPipelineCreateInfo`
![](images/library.png)
We start by adding the device extension in main()
We start by adding the device extension in main()
~~~~ C
contextInfo.addDeviceExtension(VK_KHR_PIPELINE_LIBRARY_EXTENSION_NAME);
~~~~
Following by adding a new member in the `HelloVulkan` class:
~~~~ C
// Ray tracing shader library
VkPipeline m_rtShaderLibrary;
~~~~
In `HelloVulkan::createRtPipeline()` the `StageIndices` enumeration describes the indices of the stages defined in the pipeline creation structure. The hit groups will be moved to our library, hence we remove them from the enumeration:
~~~~ C
enum StageIndices
{
@ -44,16 +45,20 @@ In `HelloVulkan::createRtPipeline()` the `StageIndices` enumeration describes th
~~~~
The shader modules will be referenced partly in the main pipeline, and partly in the pipeline library. To ensure proper deletion of the modules after use, we will store their handles in
~~~~ C
// Store the created modules for later cleanup
std::vector<VkShaderModule> modules;
~~~~
Then, after each call to `nvvk::createShaderModule` we store the resulting module:
~~~~ C
modules.push_back(stage.module);
~~~~
The specialization constants sample creates one shader module per specialization. Instead, we load that module once and reuse it for each specialization. Those specializations are then stored in the stages of the pipeline library:
~~~~ C
// Hit Group - Closest Hit
// Create many variation of the closest hit
@ -72,6 +77,7 @@ The specialization constants sample creates one shader module per specialization
~~~~
Similarly, the hit groups will be stored in the library by replacing the storage of the hit groups in `m_rtShaderGroups` by:
~~~~ C
// Shader groups for the pipeline library containing the closest hit shaders
std::vector<VkRayTracingShaderGroupCreateInfoKHR> libraryShaderGroups;
@ -92,9 +98,11 @@ Similarly, the hit groups will be stored in the library by replacing the storage
libraryShaderGroups.push_back(libraryGroup);
}
~~~~
It is important to note that the stage indices are local to the pipeline library, regardless of where they will be used in the final pipeline. Those indices will be later offset depending on the contents of the pipeline.
It is important to note that the stage indices are local to the pipeline library, regardless of where they will be used in the final pipeline. Those indices will be later offset depending on the contents of the pipeline.
Once the groups and stages are defined we can create the pipeline library. After the creation of the ray tracing pipeline layout, we define the base of the library creation information:
~~~~ C
// Creation of the pipeline library object
VkRayTracingPipelineCreateInfoKHR pipelineLibraryInfo{VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR};
@ -105,9 +113,11 @@ Once the groups and stages are defined we can create the pipeline library. After
// As for the interface the maximum recursion depth must also be consistent across the pipeline
pipelineLibraryInfo.maxPipelineRayRecursionDepth = 2;
~~~~
Pipeline libraries are technically independent from the pipeline they will be linked into. However, linking can only be achieved by enforcing strong consistency constraints, such as having the same pipeline layout and maximum recursion depth. If the recursion depth differs the compilation of the final pipeline will fail.
Pipeline libraries are technically independent from the pipeline they will be linked into. However, linking can only be achieved by enforcing strong consistency constraints, such as having the same pipeline layout and maximum recursion depth. If the recursion depth differs the compilation of the final pipeline will fail.
In addition, the pipeline libraries need to have the same pipeline interface. This interface defines the maximum amount of data passed across stages:
~~~~ C
// Pipeline libraries need to define an interface, defined by the maximum hit attribute size (typically 2 for
// the built-in triangle intersector) and the maximum payload size (3 floating-point values in this sample).
@ -119,6 +129,7 @@ In addition, the pipeline libraries need to have the same pipeline interface. Th
~~~~
Finally we provide the stage and shader groups information to the library creation information, and create the pipeline library in the same way as any other pipeline:
~~~~ C
// Shader groups and stages for the library
pipelineLibraryInfo.groupCount = static_cast<uint32_t>(libraryShaderGroups.size());
@ -129,7 +140,9 @@ Finally we provide the stage and shader groups information to the library creati
// Creation of the pipeline library
vkCreateRayTracingPipelinesKHR(m_device, {}, {}, 1, &pipelineLibraryInfo, nullptr, &m_rtShaderLibrary);
~~~~
The pipeline library is now created, but the application cannot run yet: we still need to indicate that the final pipeline will link with our library. Before calling `vkCreateRayTracingPipelinesKHR` for the final pipeline, we insert the reference to the library:
~~~~ C
// The library will be linked into the final pipeline by specifying its handle and shared interface
VkPipelineLibraryCreateInfoKHR inputLibrary{VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR};
@ -142,6 +155,7 @@ The pipeline library is now created, but the application cannot run yet: we stil
The pipeline is now built from the specified shader groups and stages as well as the library containing the hit groups. The groups and stages are linked together using indices, and indices are local to each library. To avoid collisions the pipeline creation will consider the stages of the libraries as if they had been appended to the stage list of the original `VkRayTracingPipelineCreateInfoKHR`, in the order in which the libraries are defined in `pLibraries`.
Therefore, the Shader Binding Table needs to be updated accordingly, by making the wrapper aware of the contents of the library:
~~~~ C
// The Shader Binding Table is built accounting for the entire pipeline, including the
// stages contained in the library. Passing the library information allows the wrapper
@ -150,6 +164,7 @@ Therefore, the Shader Binding Table needs to be updated accordingly, by making t
~~~~
At the end of the function we destroy the shader modules using our vector of modules instead of iterating over the stages of the main pipeline:
~~~~ C
// Destroy all the created modules, for both libraries and main pipeline
for(auto& m : modules)
@ -157,12 +172,13 @@ At the end of the function we destroy the shader modules using our vector of mod
~~~~
The pipeline library has the same lifetime as the pipeline that uses it. The final step of this Section is the destruction of the library in the `HelloVulkan::destroy()` method:
~~~~ C
// Pipeline libraries have the same lifetime as the pipelines that uses them
vkDestroyPipeline(m_device, m_rtShaderLibrary, nullptr);
~~~~
As an exercise, it is possible to create another library containing the other shader stages, and link those libraries together into the pipeline.
As an exercise, it is possible to create another library containing the other shader stages, and link those libraries together into the pipeline.
## Parallel Compilation Using Deferred Host Operations
@ -173,11 +189,13 @@ Ray tracing pipelines are often complex, and can benefit from multithreaded comp
![Deferred Host Operations use app-provided threads to parallelize the compilation](images/deferred_host_operations.png)
We start by including the support of C++ threading using `std::async` at the beginning of the source file:
~~~~ C
#include <future>
~~~~
In this sample we will distribute the compilation of the final ray tracing pipeline using a `VkDeferredOperation`, created just before calling `vkCreateRayTracingPipelinesKHR`:
~~~~ C
// Deferred operations allow the driver to parallelize the pipeline compilation on several threads
// Create a deferred operation
@ -187,14 +205,17 @@ In this sample we will distribute the compilation of the final ray tracing pipel
~~~~
Then we modify the pipeline creation to indicate we defer the operation:
~~~~ C
// The pipeline creation is called with the deferred operation. Instead of blocking until
// the compilation is done, the call returns immediately
vkCreateRayTracingPipelinesKHR(m_device, deferredOperation, {}, 1, &rayPipelineInfo, nullptr, &m_rtPipeline);
~~~~
Instead of immediately launching the compilation and blocking execution until completion, this call will return immediately with value `VK_OPERATION_DEFERRED_KHR` if deferred operations are supported by the system.
Instead of immediately launching the compilation and blocking execution until completion, this call will return immediately with value `VK_OPERATION_DEFERRED_KHR` if deferred operations are supported by the system.
Threading control is left to the application. Therefore, our application will allocate a number of threads for compilation:
~~~~ C
// The compilation will be split into a maximum of 8 threads, or the maximum supported by the
// driver for that operation
@ -203,6 +224,7 @@ Threading control is left to the application. Therefore, our application will al
~~~~
We then launch those threads using `std::async`:
~~~~ C
std::vector<std::future<void>> joins;
for(uint32_t i = 0; i < threadCount; i++)
@ -222,9 +244,11 @@ We then launch those threads using `std::async`:
}));
}
~~~~
Each thread executes a blocking function taking care of a subset of the compilation. When a thread has finished its task, the pipeline compilation may be complete (`VK_SUCCESS`) or there may be no more work for this thread. In this case one could consider executing more work using those threads, such as compiling another pipeline.
Since there is only one pipeline to compile, we wait for all threads to finish and check whether the pipeline compilation succeeded:
~~~~ C
// Wait for all threads to finish
for(auto& f : joins)
@ -237,17 +261,17 @@ Since there is only one pipeline to compile, we wait for all threads to finish a
~~~~
Once the compilation is finished we can destroy the deferred operation:
~~~~ C
// Destroy the deferred operation
vkDestroyDeferredOperationKHR(m_device, deferredOperation, nullptr);
~~~~
Congratulations! The ray tracing pipeline is now built using explicit stages and a pipeline library, and the final compilation is executed on multiple threads. As an exercise, the pipeline library described at the beginning of this tutorial can also be compiled in parallel.
Congratulations! The ray tracing pipeline is now built using explicit stages and a pipeline library, and the final compilation is executed on multiple threads. As an exercise, the pipeline library described at the beginning of this tutorial can also be compiled in parallel.
This approach can be extended to compile multiple pipelines sharing some components using multiple threads:
![](images/high_level_advanced_compilation.png)
## References
* [VK_KHR_pipeline_library](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_pipeline_library.html)
* [VK_KHR_deferred_host_operations](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_deferred_host_operations.html)
* [VK_KHR_pipeline_library](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_pipeline_library.html)
* [VK_KHR_deferred_host_operations](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_deferred_host_operations.html)

View file

@ -43,17 +43,6 @@
extern std::vector<std::string> defaultSearchPaths;
// Holding the camera matrices
struct CameraMatrices
{
nvmath::mat4f view;
nvmath::mat4f proj;
nvmath::mat4f viewInverse;
// #VKRay
nvmath::mat4f projInverse;
};
//--------------------------------------------------------------------------------------------------
// Keep the handle on the device
// Initialize the tool to do all our allocations: buffers, images
@ -73,16 +62,17 @@ void HelloVulkan::updateUniformBuffer(const VkCommandBuffer& cmdBuf)
{
// Prepare new UBO contents on host.
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
CameraMatrices hostUBO = {};
hostUBO.view = CameraManip.getMatrix();
hostUBO.proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
// hostUBO.proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
hostUBO.viewInverse = nvmath::invert(hostUBO.view);
// #VKRay
hostUBO.projInverse = nvmath::invert(hostUBO.proj);
GlobalUniforms hostUBO = {};
const auto& view = CameraManip.getMatrix();
const auto& proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
// proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
hostUBO.viewProj = proj * view;
hostUBO.viewInverse = nvmath::invert(view);
hostUBO.projInverse = nvmath::invert(proj);
// UBO on the device, and what stages access it.
VkBuffer deviceUBO = m_cameraMat.buffer;
VkBuffer deviceUBO = m_bGlobals.buffer;
auto uboUsageStages = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR;
// Ensure that the modified UBO is not visible to previous frames.
@ -98,7 +88,7 @@ void HelloVulkan::updateUniformBuffer(const VkCommandBuffer& cmdBuf)
// Schedule the host-to-device upload. (hostUBO is copied into the cmd
// buffer so it is okay to deallocate when the function returns).
vkCmdUpdateBuffer(cmdBuf, m_cameraMat.buffer, 0, sizeof(CameraMatrices), &hostUBO);
vkCmdUpdateBuffer(cmdBuf, m_bGlobals.buffer, 0, sizeof(GlobalUniforms), &hostUBO);
// Making sure the updated UBO will be visible.
VkBufferMemoryBarrier afterBarrier{VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER};
@ -118,13 +108,14 @@ void HelloVulkan::createDescriptorSetLayout()
{
auto nbTxt = static_cast<uint32_t>(m_textures.size());
// Camera matrices (binding = 0)
m_descSetLayoutBind.addBinding(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_RAYGEN_BIT_KHR);
// Scene description (binding = 1)
m_descSetLayoutBind.addBinding(1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
// Camera matrices
m_descSetLayoutBind.addBinding(SceneBindings::eGlobals, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_RAYGEN_BIT_KHR);
// Obj descriptions
m_descSetLayoutBind.addBinding(SceneBindings::eObjDescs, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Textures (binding = 3)
m_descSetLayoutBind.addBinding(2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, nbTxt,
// Textures
m_descSetLayoutBind.addBinding(SceneBindings::eTextures, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, nbTxt,
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
@ -141,11 +132,11 @@ void HelloVulkan::updateDescriptorSet()
std::vector<VkWriteDescriptorSet> writes;
// Camera matrices and scene description
VkDescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 0, &dbiUnif));
VkDescriptorBufferInfo dbiUnif{m_bGlobals.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, SceneBindings::eGlobals, &dbiUnif));
VkDescriptorBufferInfo dbiSceneDesc{m_sceneDesc.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 1, &dbiSceneDesc));
VkDescriptorBufferInfo dbiSceneDesc{m_bObjDesc.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, SceneBindings::eObjDescs, &dbiSceneDesc));
// All texture samplers
std::vector<VkDescriptorImageInfo> diit;
@ -153,7 +144,7 @@ void HelloVulkan::updateDescriptorSet()
{
diit.emplace_back(texture.descriptor);
}
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 2, diit.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, SceneBindings::eTextures, diit.data()));
// Writing the information
vkUpdateDescriptorSets(m_device, static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
@ -165,7 +156,7 @@ void HelloVulkan::updateDescriptorSet()
//
void HelloVulkan::createGraphicsPipeline()
{
VkPushConstantRange pushConstantRanges = {VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(ObjPushConstant)};
VkPushConstantRange pushConstantRanges = {VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushConstantRaster)};
// Creating the Pipeline Layout
VkPipelineLayoutCreateInfo createInfo{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
@ -225,30 +216,35 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
model.indexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_indices, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | rayTracingFlags);
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
// Creates all textures found
uint32_t txtOffset = static_cast<uint32_t>(m_textures.size());
// Creates all textures found and find the offset for this model
auto txtOffset = static_cast<uint32_t>(m_textures.size());
createTextureImages(cmdBuf, loader.m_textures);
cmdBufGet.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
std::string objNb = std::to_string(m_objModel.size());
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb).c_str()));
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb).c_str()));
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb).c_str()));
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb).c_str()));
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb)));
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb)));
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb)));
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb)));
// Keeping transformation matrix of the instance
ObjInstance instance;
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
instance.transform = transform;
instance.transformIT = nvmath::transpose(nvmath::invert(transform));
instance.txtOffset = txtOffset;
instance.vertices = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
instance.indices = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
instance.materials = nvvk::getBufferDeviceAddress(m_device, model.matColorBuffer.buffer);
instance.materialIndices = nvvk::getBufferDeviceAddress(m_device, model.matIndexBuffer.buffer);
instance.transform = transform;
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
m_instances.push_back(instance);
// Creating information for device access
ObjDesc desc;
desc.txtOffset = txtOffset;
desc.vertexAddress = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
desc.indexAddress = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
desc.materialAddress = nvvk::getBufferDeviceAddress(m_device, model.matColorBuffer.buffer);
desc.materialIndexAddress = nvvk::getBufferDeviceAddress(m_device, model.matIndexBuffer.buffer);
// Keeping the obj host model and device description
m_objModel.emplace_back(model);
m_objInstance.emplace_back(instance);
m_objDesc.emplace_back(desc);
}
@ -258,9 +254,9 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
//
void HelloVulkan::createUniformBuffer()
{
m_cameraMat = m_alloc.createBuffer(sizeof(CameraMatrices), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
m_debug.setObjectName(m_cameraMat.buffer, "cameraMat");
m_bGlobals = m_alloc.createBuffer(sizeof(GlobalUniforms), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
m_debug.setObjectName(m_bGlobals.buffer, "Globals");
}
//--------------------------------------------------------------------------------------------------
@ -269,15 +265,15 @@ void HelloVulkan::createUniformBuffer()
// - Transformation
// - Offset for texture
//
void HelloVulkan::createSceneDescriptionBuffer()
void HelloVulkan::createObjDescriptionBuffer()
{
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
auto cmdBuf = cmdGen.createCommandBuffer();
m_sceneDesc = m_alloc.createBuffer(cmdBuf, m_objInstance, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
m_bObjDesc = m_alloc.createBuffer(cmdBuf, m_objDesc, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
cmdGen.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
m_debug.setObjectName(m_sceneDesc.buffer, "sceneDesc");
m_debug.setObjectName(m_bObjDesc.buffer, "ObjDescs");
}
//--------------------------------------------------------------------------------------------------
@ -363,8 +359,8 @@ void HelloVulkan::destroyResources()
vkDestroyDescriptorPool(m_device, m_descPool, nullptr);
vkDestroyDescriptorSetLayout(m_device, m_descSetLayout, nullptr);
m_alloc.destroy(m_cameraMat);
m_alloc.destroy(m_sceneDesc);
m_alloc.destroy(m_bGlobals);
m_alloc.destroy(m_bObjDesc);
for(auto& m : m_objModel)
{
@ -420,14 +416,14 @@ void HelloVulkan::rasterize(const VkCommandBuffer& cmdBuf)
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1, &m_descSet, 0, nullptr);
for(int i = 0; i < m_objInstance.size(); ++i)
for(const HelloVulkan::ObjInstance& inst : m_instances)
{
auto& inst = m_objInstance[i];
auto& model = m_objModel[inst.objIndex];
m_pushConstant.instanceId = i; // Telling which instance is drawn
auto& model = m_objModel[inst.objIndex];
m_pcRaster.objIndex = inst.objIndex; // Telling which object is drawn
m_pcRaster.modelMatrix = inst.transform;
vkCmdPushConstants(cmdBuf, m_pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0,
sizeof(ObjPushConstant), &m_pushConstant);
sizeof(PushConstantRaster), &m_pcRaster);
vkCmdBindVertexBuffers(cmdBuf, 0, 1, &model.vertexBuffer.buffer, &offset);
vkCmdBindIndexBuffer(cmdBuf, model.indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdBuf, model.nbIndices, 1, 0, 0, 0);
@ -618,7 +614,7 @@ auto HelloVulkan::objectToVkGeometryKHR(const ObjModel& model)
// Describe buffer as array of VertexObj.
VkAccelerationStructureGeometryTrianglesDataKHR triangles{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR};
triangles.vertexFormat = VK_FORMAT_R32G32B32A32_SFLOAT; // vec3 vertex position data.
triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT; // vec3 vertex position data.
triangles.vertexData.deviceAddress = vertexAddress;
triangles.vertexStride = sizeof(VertexObj);
// Describe index data (32-bit unsigned int)
@ -667,19 +663,22 @@ void HelloVulkan::createBottomLevelAS()
m_rtBuilder.buildBlas(allBlas, VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR);
}
//--------------------------------------------------------------------------------------------------
//
//
void HelloVulkan::createTopLevelAS()
{
std::vector<VkAccelerationStructureInstanceKHR> tlas;
tlas.reserve(m_objInstance.size());
for(uint32_t i = 0; i < static_cast<uint32_t>(m_objInstance.size()); i++)
tlas.reserve(m_instances.size());
for(const HelloVulkan::ObjInstance& inst : m_instances)
{
VkAccelerationStructureInstanceKHR rayInst;
rayInst.transform = nvvk::toTransformMatrixKHR(m_objInstance[i].transform); // Position of the instance
rayInst.instanceCustomIndex = i; // gl_InstanceCustomIndexEXT
rayInst.accelerationStructureReference = m_rtBuilder.getBlasDeviceAddress(m_objInstance[i].objIndex);
VkAccelerationStructureInstanceKHR rayInst{};
rayInst.transform = nvvk::toTransformMatrixKHR(inst.transform); // Position of the instance
rayInst.instanceCustomIndex = inst.objIndex; // gl_InstanceCustomIndexEXT
rayInst.accelerationStructureReference = m_rtBuilder.getBlasDeviceAddress(inst.objIndex);
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
rayInst.mask = 0xFF; // Only be hit if rayMask & instance.mask != 0
rayInst.instanceShaderBindingTableRecordOffset = 0; // We will use the same hit group for all objects
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
rayInst.mask = 0xFF;
tlas.emplace_back(rayInst);
}
m_rtBuilder.buildTlas(tlas, VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR);
@ -692,9 +691,9 @@ void HelloVulkan::createRtDescriptorSet()
{
// Top-level acceleration structure, usable by both the ray generation and the closest hit (to
// shoot shadow rays)
m_rtDescSetLayoutBind.addBinding(0, VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1,
m_rtDescSetLayoutBind.addBinding(RtxBindings::eTlas, VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1,
VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR); // TLAS
m_rtDescSetLayoutBind.addBinding(1, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1,
m_rtDescSetLayoutBind.addBinding(RtxBindings::eOutImage, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1,
VK_SHADER_STAGE_RAYGEN_BIT_KHR); // Output image
m_rtDescPool = m_rtDescSetLayoutBind.createPool(m_device);
@ -714,8 +713,8 @@ void HelloVulkan::createRtDescriptorSet()
VkDescriptorImageInfo imageInfo{{}, m_offscreenColor.descriptor.imageView, VK_IMAGE_LAYOUT_GENERAL};
std::vector<VkWriteDescriptorSet> writes;
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 0, &descASInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 1, &imageInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, RtxBindings::eTlas, &descASInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, RtxBindings::eOutImage, &imageInfo));
vkUpdateDescriptorSets(m_device, static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
}
@ -728,7 +727,7 @@ void HelloVulkan::updateRtDescriptorSet()
{
// (1) Output buffer
VkDescriptorImageInfo imageInfo{{}, m_offscreenColor.descriptor.imageView, VK_IMAGE_LAYOUT_GENERAL};
VkWriteDescriptorSet wds = m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 1, &imageInfo);
VkWriteDescriptorSet wds = m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, RtxBindings::eOutImage, &imageInfo);
vkUpdateDescriptorSets(m_device, 1, &wds, 0, nullptr);
}
@ -767,7 +766,7 @@ public:
private:
std::vector<int32_t> spec_values;
std::vector<VkSpecializationMapEntry> spec_entries;
VkSpecializationInfo spec_info;
VkSpecializationInfo spec_info{};
};
@ -825,10 +824,10 @@ void HelloVulkan::createRtPipeline()
modules.push_back(stage.module);
// Store the hit groups for compilation in a separate pipeline library object
std::vector<VkPipelineShaderStageCreateInfo> libraryStages{};
for(uint32_t s = 0; s < (uint32_t)specializations.size(); s++)
for(auto& specialization : specializations)
{
stage.stage = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
stage.pSpecializationInfo = specializations[s].getSpecialization();
stage.pSpecializationInfo = specialization.getSpecialization();
libraryStages.push_back(stage);
}
@ -876,7 +875,7 @@ void HelloVulkan::createRtPipeline()
// Push constant: we want to be able to update constants used by the shaders
VkPushConstantRange pushConstant{VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR,
0, sizeof(RtPushConstant)};
0, sizeof(PushConstantRay)};
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
@ -1008,11 +1007,10 @@ void HelloVulkan::raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& c
{
m_debug.beginLabel(cmdBuf, "Ray trace");
// Initializing push constant values
m_rtPushConstants.clearColor = clearColor;
m_rtPushConstants.lightPosition = m_pushConstant.lightPosition;
m_rtPushConstants.lightIntensity = m_pushConstant.lightIntensity;
m_rtPushConstants.lightType = m_pushConstant.lightType;
m_rtPushConstants.specialization = m_pushConstant.specialization;
m_pcRay.clearColor = clearColor;
m_pcRay.lightPosition = m_pcRaster.lightPosition;
m_pcRay.lightIntensity = m_pcRaster.lightIntensity;
m_pcRay.lightType = m_pcRaster.lightType;
std::vector<VkDescriptorSet> descSets{m_rtDescSet, m_descSet};
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, m_rtPipeline);
@ -1020,7 +1018,7 @@ void HelloVulkan::raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& c
(uint32_t)descSets.size(), descSets.data(), 0, nullptr);
vkCmdPushConstants(cmdBuf, m_rtPipelineLayout,
VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR,
0, sizeof(RtPushConstant), &m_rtPushConstants);
0, sizeof(PushConstantRay), &m_pcRay);
auto& regions = m_sbtWrapper.getRegions();
vkCmdTraceRaysKHR(cmdBuf, &regions[0], &regions[1], &regions[2], &regions[3], m_size.width, m_size.height, 1);

View file

@ -24,6 +24,7 @@
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/memallocator_dma_vk.hpp"
#include "nvvk/resourceallocator_vk.hpp"
#include "shaders/host_device.h"
// #VKRay
#include "nvvk/raytraceKHR_vk.hpp"
@ -45,7 +46,7 @@ public:
void loadModel(const std::string& filename, nvmath::mat4f transform = nvmath::mat4f(1));
void updateDescriptorSet();
void createUniformBuffer();
void createSceneDescriptionBuffer();
void createObjDescriptionBuffer();
void createTextureImages(const VkCommandBuffer& cmdBuf, const std::vector<std::string>& textures);
void updateUniformBuffer(const VkCommandBuffer& cmdBuf);
void onResize(int /*w*/, int /*h*/) override;
@ -63,33 +64,28 @@ public:
nvvk::Buffer matIndexBuffer; // Device buffer of array of 'Wavefront material'
};
// Instance of the OBJ
struct ObjInstance
{
nvmath::mat4f transform{1}; // Position of the instance
nvmath::mat4f transformIT{1}; // Inverse transpose
uint32_t objIndex{0}; // Reference to the `m_objModel`
uint32_t txtOffset{0}; // Offset in `m_textures`
VkDeviceAddress vertices;
VkDeviceAddress indices;
VkDeviceAddress materials;
VkDeviceAddress materialIndices;
nvmath::mat4f transform; // Matrix of the instance
uint32_t objIndex{0}; // Model index reference
};
// Information pushed at each draw call
struct ObjPushConstant
{
nvmath::vec3f lightPosition{10.f, 15.f, 8.f};
int instanceId{0}; // To retrieve the transformation matrix
float lightIntensity{100.f};
int lightType{0}; // 0: point, 1: infinite
int specialization{7}; // all in use
PushConstantRaster m_pcRaster{
{1}, // Identity matrix
{10.f, 15.f, 8.f}, // light position
0, // instance Id
100.f, // light intensity
0 // light type
};
ObjPushConstant m_pushConstant;
// Array of objects and instances in the scene
std::vector<ObjModel> m_objModel;
std::vector<ObjInstance> m_objInstance;
std::vector<ObjModel> m_objModel; // Model on host
std::vector<ObjDesc> m_objDesc; // Model description for device access
std::vector<ObjInstance> m_instances; // Scene model instances
// Graphic pipeline
VkPipelineLayout m_pipelineLayout;
@ -99,8 +95,8 @@ public:
VkDescriptorSetLayout m_descSetLayout;
VkDescriptorSet m_descSet;
nvvk::Buffer m_cameraMat; // Device-Host of the camera matrices
nvvk::Buffer m_sceneDesc; // Device buffer of the OBJ instances
nvvk::Buffer m_bGlobals; // Device-Host of the camera matrices
nvvk::Buffer m_bObjDesc; // Device buffer of the OBJ instances
nvvk::Buffer m_bufReference; // Buffer references of the OBJ
std::vector<nvvk::Texture> m_textures; // vector of all textures of the scene
@ -110,7 +106,7 @@ public:
nvvk::DebugUtil m_debug; // Utility to name objects
// #Post
// #Post - Draw the rendered image on a quad using a tonemapper
void createOffscreenRender();
void createPostPipeline();
void createPostDescriptor();
@ -151,15 +147,9 @@ public:
VkPipelineLayout m_rtPipelineLayout;
VkPipeline m_rtPipeline;
nvvk::SBTWrapper m_sbtWrapper;
// Ray tracing shader library
// Push constant for ray tracer
VkPipeline m_rtShaderLibrary;
struct RtPushConstant
{
nvmath::vec4f clearColor;
nvmath::vec3f lightPosition;
float lightIntensity{100.0f};
int lightType{0};
int specialization{7};
} m_rtPushConstants;
PushConstantRay m_pcRay{{}, {}, 0, 0, 7};
};

View file

@ -56,24 +56,24 @@ void renderUI(HelloVulkan& helloVk)
ImGuiH::CameraWidget();
if(ImGui::CollapsingHeader("Light"))
{
ImGui::RadioButton("Point", &helloVk.m_pushConstant.lightType, 0);
ImGui::RadioButton("Point", &helloVk.m_pcRaster.lightType, 0);
ImGui::SameLine();
ImGui::RadioButton("Infinite", &helloVk.m_pushConstant.lightType, 1);
ImGui::RadioButton("Infinite", &helloVk.m_pcRaster.lightType, 1);
ImGui::SliderFloat3("Position", &helloVk.m_pushConstant.lightPosition.x, -20.f, 20.f);
ImGui::SliderFloat("Intensity", &helloVk.m_pushConstant.lightIntensity, 0.f, 150.f);
ImGui::SliderFloat3("Position", &helloVk.m_pcRaster.lightPosition.x, -20.f, 20.f);
ImGui::SliderFloat("Intensity", &helloVk.m_pcRaster.lightIntensity, 0.f, 150.f);
}
// Specialization
ImGui::SliderInt("Specialization", &helloVk.m_pushConstant.specialization, 0, 7);
int s = helloVk.m_pushConstant.specialization;
ImGui::SliderInt("Specialization", &helloVk.m_pcRay.specialization, 0, 7);
int s = helloVk.m_pcRay.specialization;
int a = ((s >> 2) % 2) == 1;
int b = ((s >> 1) % 2) == 1;
int c = ((s >> 0) % 2) == 1;
ImGui::Checkbox("Use Diffuse", (bool*)&a);
ImGui::Checkbox("Use Specular", (bool*)&b);
ImGui::Checkbox("Trace shadow", (bool*)&c);
helloVk.m_pushConstant.specialization = (a << 2) + (b << 1) + c;
helloVk.m_pcRay.specialization = (a << 2) + (b << 1) + c;
}
//////////////////////////////////////////////////////////////////////////
@ -175,7 +175,7 @@ int main(int argc, char** argv)
helloVk.createDescriptorSetLayout();
helloVk.createGraphicsPipeline();
helloVk.createUniformBuffer();
helloVk.createSceneDescriptionBuffer();
helloVk.createObjDescriptionBuffer();
helloVk.updateDescriptorSet();
// #VKRay

View file

@ -29,62 +29,55 @@
#include "wavefront.glsl"
layout(push_constant) uniform shaderInformation
layout(push_constant) uniform _PushConstantRaster
{
vec3 lightPosition;
uint instanceId;
float lightIntensity;
int lightType;
}
pushC;
PushConstantRaster pcRaster;
};
// clang-format off
// Incoming
layout(location = 1) in vec2 fragTexCoord;
layout(location = 2) in vec3 fragNormal;
layout(location = 3) in vec3 viewDir;
layout(location = 4) in vec3 worldPos;
layout(location = 1) in vec3 i_worldPos;
layout(location = 2) in vec3 i_worldNrm;
layout(location = 3) in vec3 i_viewDir;
layout(location = 4) in vec2 i_texCoord;
// Outgoing
layout(location = 0) out vec4 outColor;
layout(location = 0) out vec4 o_color;
layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object
layout(buffer_reference, scalar) buffer Indices {uint i[]; }; // Triangle indices
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(binding = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
layout(binding = 2) uniform sampler2D[] textureSamplers;
layout(binding = eObjDescs, scalar) buffer ObjDesc_ { ObjDesc i[]; } objDesc;
layout(binding = eTextures) uniform sampler2D[] textureSamplers;
// clang-format on
void main()
{
// Object of this instance
int objId = sceneDesc.i[pushC.instanceId].objId;
// Material of the object
SceneDesc objResource = sceneDesc.i[pushC.instanceId];
ObjDesc objResource = objDesc.i[pcRaster.objIndex];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
int matIndex = matIndices.i[gl_PrimitiveID];
WaveFrontMaterial mat = materials.m[matIndex];
vec3 N = normalize(fragNormal);
vec3 N = normalize(i_worldNrm);
// Vector toward light
vec3 L;
float lightIntensity = pushC.lightIntensity;
if(pushC.lightType == 0)
float lightIntensity = pcRaster.lightIntensity;
if(pcRaster.lightType == 0)
{
vec3 lDir = pushC.lightPosition - worldPos;
vec3 lDir = pcRaster.lightPosition - i_worldPos;
float d = length(lDir);
lightIntensity = pushC.lightIntensity / (d * d);
lightIntensity = pcRaster.lightIntensity / (d * d);
L = normalize(lDir);
}
else
{
L = normalize(pushC.lightPosition - vec3(0));
L = normalize(pcRaster.lightPosition);
}
@ -92,15 +85,15 @@ void main()
vec3 diffuse = computeDiffuse(mat, L, N);
if(mat.textureId >= 0)
{
int txtOffset = sceneDesc.i[pushC.instanceId].txtOffset;
int txtOffset = objDesc.i[pcRaster.objIndex].txtOffset;
uint txtId = txtOffset + mat.textureId;
vec3 diffuseTxt = texture(textureSamplers[nonuniformEXT(txtId)], fragTexCoord).xyz;
vec3 diffuseTxt = texture(textureSamplers[nonuniformEXT(txtId)], i_texCoord).xyz;
diffuse *= diffuseTxt;
}
// Specular
vec3 specular = computeSpecular(mat, viewDir, L, N);
vec3 specular = computeSpecular(mat, i_viewDir, L, N);
// Result
outColor = vec4(lightIntensity * (diffuse + specular), 1);
o_color = vec4(lightIntensity * (diffuse + specular), 1);
}

View file

@ -0,0 +1,118 @@
/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef COMMON_HOST_DEVICE
#define COMMON_HOST_DEVICE
#ifdef __cplusplus
#include "nvmath/nvmath.h"
// GLSL Type
using vec2 = nvmath::vec2f;
using vec3 = nvmath::vec3f;
using vec4 = nvmath::vec4f;
using mat4 = nvmath::mat4f;
using uint = unsigned int;
#endif
// clang-format off
#ifdef __cplusplus // Descriptor binding helper for C++ and GLSL
#define START_BINDING(a) enum a {
#define END_BINDING() }
#else
#define START_BINDING(a) const uint
#define END_BINDING()
#endif
START_BINDING(SceneBindings)
eGlobals = 0, // Global uniform containing camera matrices
eObjDescs = 1, // Access to the object descriptions
eTextures = 2 // Access to textures
END_BINDING();
START_BINDING(RtxBindings)
eTlas = 0, // Top-level acceleration structure
eOutImage = 1 // Ray tracer output image
END_BINDING();
// clang-format on
// Information of a obj model when referenced in a shader
struct ObjDesc
{
int txtOffset; // Texture index offset in the array of textures
uint64_t vertexAddress; // Address of the Vertex buffer
uint64_t indexAddress; // Address of the index buffer
uint64_t materialAddress; // Address of the material buffer
uint64_t materialIndexAddress; // Address of the triangle material index buffer
};
// Uniform buffer set at each frame
struct GlobalUniforms
{
mat4 viewProj; // Camera view * projection
mat4 viewInverse; // Camera inverse view matrix
mat4 projInverse; // Camera inverse projection matrix
};
// Push constant structure for the raster
struct PushConstantRaster
{
mat4 modelMatrix; // matrix of the instance
vec3 lightPosition;
uint objIndex;
float lightIntensity;
int lightType;
};
// Push constant structure for the ray tracer
struct PushConstantRay
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
int specialization;
};
struct Vertex // See ObjLoader, copy of VertexObj, could be compressed for device
{
vec3 pos;
vec3 nrm;
vec3 color;
vec2 texCoord;
};
struct WaveFrontMaterial // See ObjLoader, copy of MaterialObj, could be compressed for device
{
vec3 ambient;
vec3 diffuse;
vec3 specular;
vec3 transmittance;
vec3 emission;
float shininess;
float ior; // index of refraction
float dissolve; // 1 == opaque; 0 == fully transparent
int illum; // illumination model (see http://www.fileformat.info/format/material/)
int textureId;
};
#endif

View file

@ -39,30 +39,21 @@ layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of
layout(buffer_reference, scalar) buffer Indices {ivec3 i[]; }; // Triangle indices
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 1, set = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
layout(binding = 2, set = 1) uniform sampler2D textureSamplers[];
layout(set = 0, binding = eTlas) uniform accelerationStructureEXT topLevelAS;
layout(set = 1, binding = eObjDescs, scalar) buffer ObjDesc_ { ObjDesc i[]; } objDesc;
layout(set = 1, binding = eTextures) uniform sampler2D textureSamplers[];
layout(constant_id = 0) const int USE_DIFFUSE = 1;
layout(constant_id = 1) const int USE_SPECULAR = 1;
layout(constant_id = 2) const int TRACE_SHADOW = 1;
layout(push_constant) uniform _PushConstantRay { PushConstantRay pcRay; };
// clang-format on
layout(push_constant) uniform Constants
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
int specialization;
}
pushC;
void main()
{
// Object data
SceneDesc objResource = sceneDesc.i[gl_InstanceCustomIndexEXT];
ObjDesc objResource = objDesc.i[gl_InstanceCustomIndexEXT];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
Indices indices = Indices(objResource.indexAddress);
@ -78,32 +69,29 @@ void main()
const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y);
// Computing the normal at hit position
vec3 normal = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z;
// Transforming the normal to world space
normal = normalize(vec3(sceneDesc.i[gl_InstanceCustomIndexEXT].transfoIT * vec4(normal, 0.0)));
// Computing the coordinates of the hit position
vec3 worldPos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z;
// Transforming the position to world space
worldPos = vec3(sceneDesc.i[gl_InstanceCustomIndexEXT].transfo * vec4(worldPos, 1.0));
const vec3 pos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z;
const vec3 worldPos = vec3(gl_ObjectToWorldEXT * vec4(pos, 1.0)); // Transforming the position to world space
// Computing the normal at hit position
const vec3 nrm = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z;
const vec3 worldNrm = normalize(vec3(nrm * gl_WorldToObjectEXT)); // Transforming the normal to world space
// Vector toward the light
vec3 L;
float lightIntensity = pushC.lightIntensity;
float lightIntensity = pcRay.lightIntensity;
float lightDistance = 100000.0;
// Point light
if(pushC.lightType == 0)
if(pcRay.lightType == 0)
{
vec3 lDir = pushC.lightPosition - worldPos;
vec3 lDir = pcRay.lightPosition - worldPos;
lightDistance = length(lDir);
lightIntensity = pushC.lightIntensity / (lightDistance * lightDistance);
lightIntensity = pcRay.lightIntensity / (lightDistance * lightDistance);
L = normalize(lDir);
}
else // Directional light
{
L = normalize(pushC.lightPosition - vec3(0));
L = normalize(pcRay.lightPosition);
}
// Material of the object
@ -115,10 +103,10 @@ void main()
vec3 diffuse = vec3(0);
if(USE_DIFFUSE == 1)
{
diffuse = computeDiffuse(mat, L, normal);
diffuse = computeDiffuse(mat, L, worldNrm);
if(mat.textureId >= 0)
{
uint txtId = mat.textureId + sceneDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
uint txtId = mat.textureId + objDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z;
diffuse *= texture(textureSamplers[nonuniformEXT(txtId)], texCoord).xyz;
}
@ -128,7 +116,7 @@ void main()
float attenuation = 1;
// Tracing shadow ray only if the light is visible from the surface
if(dot(normal, L) > 0)
if(dot(worldNrm, L) > 0)
{
if(TRACE_SHADOW == 1)
{
@ -163,7 +151,7 @@ void main()
// Specular
if(USE_SPECULAR == 1)
{
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, normal);
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, worldNrm);
}
}
}

View file

@ -20,31 +20,21 @@
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 1, set = 0, rgba32f) uniform image2D image;
// clang-format off
layout(location = 0) rayPayloadEXT hitPayload prd;
layout(binding = 0, set = 1) uniform CameraProperties
{
mat4 view;
mat4 proj;
mat4 viewInverse;
mat4 projInverse;
}
cam;
layout(set = 0, binding = eTlas) uniform accelerationStructureEXT topLevelAS;
layout(set = 0, binding = eOutImage, rgba32f) uniform image2D image;
layout(set = 1, binding = eGlobals) uniform _GlobalUniforms { GlobalUniforms uni; };
layout(push_constant) uniform _PushConstantRay { PushConstantRay pcRay; };
// clang-format on
layout(push_constant) uniform Constants
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
int specialization;
}
pushC;
void main()
{
@ -52,9 +42,9 @@ void main()
const vec2 inUV = pixelCenter / vec2(gl_LaunchSizeEXT.xy);
vec2 d = inUV * 2.0 - 1.0;
vec4 origin = cam.viewInverse * vec4(0, 0, 0, 1);
vec4 target = cam.projInverse * vec4(d.x, d.y, 1, 1);
vec4 direction = cam.viewInverse * vec4(normalize(target.xyz), 0);
vec4 origin = uni.viewInverse * vec4(0, 0, 0, 1);
vec4 target = uni.projInverse * vec4(d.x, d.y, 1, 1);
vec4 direction = uni.viewInverse * vec4(normalize(target.xyz), 0);
uint rayFlags = gl_RayFlagsOpaqueEXT;
float tMin = 0.001;
@ -63,7 +53,7 @@ void main()
traceRayEXT(topLevelAS, // acceleration structure
rayFlags, // rayFlags
0xFF, // cullMask
pushC.specialization, // sbtRecordOffset
pcRay.specialization, // sbtRecordOffset
0, // sbtRecordStride
0, // missIndex
origin.xyz, // ray origin

View file

@ -20,16 +20,19 @@
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
layout(location = 0) rayPayloadInEXT hitPayload prd;
layout(push_constant) uniform Constants
layout(push_constant) uniform _PushConstantRay
{
vec4 clearColor;
PushConstantRay pcRay;
};
void main()
{
prd.hitValue = clearColor.xyz * 0.8;
prd.hitValue = pcRay.clearColor.xyz * 0.8;
}

View file

@ -26,38 +26,26 @@
#include "wavefront.glsl"
// clang-format off
layout(binding = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
// clang-format on
layout(binding = 0) uniform UniformBufferObject
layout(binding = 0) uniform _GlobalUniforms
{
mat4 view;
mat4 proj;
mat4 viewI;
}
ubo;
GlobalUniforms uni;
};
layout(push_constant) uniform shaderInformation
layout(push_constant) uniform _PushConstantRaster
{
vec3 lightPosition;
uint instanceId;
float lightIntensity;
int lightType;
}
pushC;
PushConstantRaster pcRaster;
};
layout(location = 0) in vec3 inPosition;
layout(location = 1) in vec3 inNormal;
layout(location = 2) in vec3 inColor;
layout(location = 3) in vec2 inTexCoord;
layout(location = 0) in vec3 i_position;
layout(location = 1) in vec3 i_normal;
layout(location = 2) in vec3 i_color;
layout(location = 3) in vec2 i_texCoord;
//layout(location = 0) flat out int matIndex;
layout(location = 1) out vec2 fragTexCoord;
layout(location = 2) out vec3 fragNormal;
layout(location = 3) out vec3 viewDir;
layout(location = 4) out vec3 worldPos;
layout(location = 1) out vec3 o_worldPos;
layout(location = 2) out vec3 o_worldNrm;
layout(location = 3) out vec3 o_viewDir;
layout(location = 4) out vec2 o_texCoord;
out gl_PerVertex
{
@ -67,16 +55,12 @@ out gl_PerVertex
void main()
{
mat4 objMatrix = sceneDesc.i[pushC.instanceId].transfo;
mat4 objMatrixIT = sceneDesc.i[pushC.instanceId].transfoIT;
vec3 origin = vec3(uni.viewInverse * vec4(0, 0, 0, 1));
vec3 origin = vec3(ubo.viewI * vec4(0, 0, 0, 1));
o_worldPos = vec3(pcRaster.modelMatrix * vec4(i_position, 1.0));
o_viewDir = vec3(o_worldPos - origin);
o_texCoord = i_texCoord;
o_worldNrm = mat3(pcRaster.modelMatrix) * i_normal;
worldPos = vec3(objMatrix * vec4(inPosition, 1.0));
viewDir = vec3(worldPos - origin);
fragTexCoord = inTexCoord;
fragNormal = vec3(objMatrixIT * vec4(inNormal, 0.0));
// matIndex = inMatID;
gl_Position = ubo.proj * ubo.view * vec4(worldPos, 1.0);
gl_Position = uni.viewProj * vec4(o_worldPos, 1.0);
}

View file

@ -17,41 +17,7 @@
* SPDX-License-Identifier: Apache-2.0
*/
struct Vertex
{
vec3 pos;
vec3 nrm;
vec3 color;
vec2 texCoord;
};
struct WaveFrontMaterial
{
vec3 ambient;
vec3 diffuse;
vec3 specular;
vec3 transmittance;
vec3 emission;
float shininess;
float ior; // index of refraction
float dissolve; // 1 == opaque; 0 == fully transparent
int illum; // illumination model (see http://www.fileformat.info/format/material/)
int textureId;
};
struct SceneDesc
{
mat4 transfo;
mat4 transfoIT;
int objId;
int txtOffset;
uint64_t vertexAddress;
uint64_t indexAddress;
uint64_t materialAddress;
uint64_t materialIndexAddress;
};
#include "host_device.h"
vec3 computeDiffuse(WaveFrontMaterial mat, vec3 lightDir, vec3 normal)
{