Refactoring

This commit is contained in:
mklefrancois 2021-09-07 09:42:21 +02:00
parent 3e399adf0a
commit d90ce79135
222 changed files with 9045 additions and 5734 deletions

View file

@ -25,28 +25,36 @@ To do this, we will need to:
* Add a new closest hit shader (.chit)
* Create `VkAccelerationStructureGeometryKHR` from `VkAccelerationStructureGeometryAabbsDataKHR`
## Creating all spheres
## Creating all implicit objects
In the HelloVulkan class, we will add the structures we will need. First the structure that defines a sphere.
In `host_device.h`, we will add the structures we will need. First the structure that defines a sphere. Note that it will also be use for defining the box. This information will be retrieve in the intersection shader to return the intersection point.
~~~~ C++
struct Sphere
{
nvmath::vec3f center;
float radius;
};
struct Sphere
{
vec3 center;
float radius;
};
~~~~
Then we need the Aabb structure holding all the spheres, but also used for the creation of the BLAS (`VK_GEOMETRY_TYPE_AABBS_KHR`).
~~~~ C++
struct Aabb
{
nvmath::vec3f minimum;
nvmath::vec3f maximum;
};
struct Aabb
{
vec3 minimum;
vec3 maximum;
};
~~~~
Also add the following define to distinguish between sphere and box
~~~~ C++
#define KIND_SPHERE 0
#define KIND_CUBE 1
~~~~
All the information will need to be hold in buffers, which will be available to the shaders.
~~~~ C++
@ -57,11 +65,11 @@ All the information will need to be hold in buffers, which will be available to
nvvkBuffer m_spheresMatIndexBuffer; // Define which sphere uses which material
~~~~
Finally, there are two functions, one to create the spheres, and one that will create the intermediate structure for the BLAS.
Finally, there are two functions, one to create the spheres, and one that will create the intermediate structure for the BLAS, similar to `objectToVkGeometryKHR()`.
~~~~ C++
void createSpheres();
nvvk::RaytracingBuilderKHR::Blas sphereToVkGeometryKHR();
void createSpheres();
auto sphereToVkGeometryKHR();
~~~~
The following implementation will create 2.000.000 spheres at random positions and radius. It will create the Aabb from the sphere definition, two materials which will be assigned alternatively to each object. All the created information will be moved to Vulkan buffers to be accessed by the intersection and closest shaders.
@ -120,9 +128,13 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
nvvk::CommandPool genCmdBuf(m_device, m_graphicsQueueIndex);
auto cmdBuf = genCmdBuf.createCommandBuffer();
m_spheresBuffer = m_alloc.createBuffer(cmdBuf, m_spheres, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
m_spheresAabbBuffer = m_alloc.createBuffer(cmdBuf, aabbs, VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
m_spheresMatIndexBuffer = m_alloc.createBuffer(cmdBuf, matIdx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
m_spheresMatColorBuffer = m_alloc.createBuffer(cmdBuf, materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
m_spheresAabbBuffer = m_alloc.createBuffer(cmdBuf, aabbs,
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
| VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR);
m_spheresMatIndexBuffer =
m_alloc.createBuffer(cmdBuf, matIdx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
m_spheresMatColorBuffer =
m_alloc.createBuffer(cmdBuf, materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT);
genCmdBuf.submitAndWait(cmdBuf);
// Debug information
@ -132,11 +144,14 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
m_debug.setObjectName(m_spheresMatIndexBuffer.buffer, "spheresMatIdx");
// Adding an extra instance to get access to the material buffers
ObjDesc objDesc{};
objDesc.materialAddress = nvvk::getBufferDeviceAddress(m_device, m_spheresMatColorBuffer.buffer);
objDesc.materialIndexAddress = nvvk::getBufferDeviceAddress(m_device, m_spheresMatIndexBuffer.buffer);
m_objDesc.emplace_back(objDesc);
ObjInstance instance{};
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
instance.materials = nvvk::getBufferDeviceAddress(m_device, m_spheresMatColorBuffer.buffer);
instance.materialIndices = nvvk::getBufferDeviceAddress(m_device, m_spheresMatIndexBuffer.buffer);
m_objInstance.emplace_back(instance);
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
m_instances.emplace_back(instance);
}
~~~~
@ -157,7 +172,7 @@ What is changing compare to triangle primitive is the Aabb data (see Aabb struct
//--------------------------------------------------------------------------------------------------
// Returning the ray tracing geometry used for the BLAS, containing all spheres
//
nvvk::RaytracingBuilderKHR::BlasInput HelloVulkan::sphereToVkGeometryKHR()
auto HelloVulkan::sphereToVkGeometryKHR()
{
VkDeviceAddress dataAddress = nvvk::getBufferDeviceAddress(m_device, m_spheresAabbBuffer.buffer);
@ -191,10 +206,10 @@ In `main.cpp`, where we are loading the OBJ model, we can replace it with
~~~~ C++
// Creation of the example
helloVk.loadModel(nvh::findFile("media/scenes/plane.obj", defaultSearchPaths, true));
helloVk.createSpheres();
helloVk.createSpheres(2000000);
~~~~
**Note:** it is possible to have more OBJ models, but the spheres will need to be added after all of them.
**:warning: Note:** it is possible to have more OBJ models, but the spheres will need to be added after all of them, due the way we build TLAS.
The scene will be large, better to move the camera out
@ -241,10 +256,11 @@ The hitGroupId will be set to 1 instead of 0. We need to add a new hit group for
Because we have added an extra instance when creating the implicit objects, there is one element less to loop for. Therefore the loop will now look like this:
~~~~ C++
auto nbObj = static_cast<uint32_t>(m_objInstance.size()) - 1;
auto nbObj = static_cast<uint32_t>(m_instances.size()) - 1;
tlas.reserve(nbObj);
for(uint32_t i = 0; i < nbObj; i++)
{
const auto& inst = m_instances[i];
...
}
~~~~
@ -253,29 +269,36 @@ Because we have added an extra instance when creating the implicit objects, ther
Just after the loop and before building the TLAS, we need to add the following.
~~~~ C++
// Add the blas containing all spheres
// Add the blas containing all implicit objects
{
nvvk::RaytracingBuilder::Instance rayInst;
rayInst.transform = m_objInstance[0].transform; // Position of the instance
rayInst.instanceCustomId = nbObj; // gl_InstanceCustomIndexEXT
rayInst.blasId = static_cast<uint32_t>(m_objModel.size());
rayInst.hitGroupId = 1; // We will use the same hit group for all objects
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
VkAccelerationStructureInstanceKHR rayInst{};
rayInst.transform = nvvk::toTransformMatrixKHR(nvmath::mat4f(1)); // Position of the instance (identity)
rayInst.instanceCustomIndex = nbObj; // nbObj == last object == implicit
rayInst.accelerationStructureReference = m_rtBuilder.getBlasDeviceAddress(static_cast<uint32_t>(m_objModel.size()));
rayInst.instanceShaderBindingTableRecordOffset = 1; // We will use the same hit group for all objects
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
rayInst.mask = 0xFF; // Only be hit if rayMask & instance.mask != 0
tlas.emplace_back(rayInst);
}
~~~~
The `instanceCustomId` will give us the last element of m_objInstance, and in the shader will will be able to access the materials
The `instanceCustomIndex` will give us the last element of `m_instances`, and in the shader will will be able to access the materials
assigned to the implicit objects.
## Descriptors
To access the newly created buffers holding all the spheres, some changes are required to the descriptors.
Add a new enum to `Binding`
~~~~ C++
eImplicit = 3, // All implicit objects
~~~~
The descriptor need to add an binding to the implicit object buffer.
~~~~ C++
// Storing spheres (binding = 3)
m_descSetLayoutBind.addBinding(3, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
m_descSetLayoutBind.addBinding(eImplicit, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR);
~~~~
@ -284,7 +307,7 @@ Then write the buffer for the spheres after the array of textures
~~~~ C++
VkDescriptorBufferInfo dbiSpheres{m_spheresBuffer.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 3, &dbiSpheres));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, eImplicit, &dbiSpheres));
~~~~
## Intersection Shader
@ -323,27 +346,6 @@ Here is how the two hit group looks like:
m_rtShaderGroups.push_back(group);
~~~~
### raycommon.glsl
To share the structure of the data across the shaders, we can add the following to `raycommon.glsl`
~~~~ C++
struct Sphere
{
vec3 center;
float radius;
};
struct Aabb
{
vec3 minimum;
vec3 maximum;
};
#define KIND_SPHERE 0
#define KIND_CUBE 1
~~~~
### raytrace.rint
The intersection shader `raytrace.rint` need to be added to the shader directory and CMake to be rerun such that it is added to the project. The shader will be called every time a ray will hit one of the Aabb of the scene. Note that there are no Aabb information that can be retrieved in the intersection shader. It is also not possible to have the value of the hit point that the ray tracer might have calculated on the GPU.
@ -360,6 +362,7 @@ We first declare the extensions and include common files.
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
~~~~
@ -368,7 +371,7 @@ We first declare the extensions and include common files.
The following is the topology of all spheres, which we will be able to retrieve using `gl_PrimitiveID`.
~~~~ C++
layout(binding = 3, set = 1, scalar) buffer allSpheres_
layout(binding = 3, set = eImplicit, scalar) buffer allSpheres_
{
Sphere allSpheres[];
};

View file

@ -41,17 +41,6 @@
extern std::vector<std::string> defaultSearchPaths;
// Holding the camera matrices
struct CameraMatrices
{
nvmath::mat4f view;
nvmath::mat4f proj;
nvmath::mat4f viewInverse;
// #VKRay
nvmath::mat4f projInverse;
};
//--------------------------------------------------------------------------------------------------
// Keep the handle on the device
// Initialize the tool to do all our allocations: buffers, images
@ -71,16 +60,17 @@ void HelloVulkan::updateUniformBuffer(const VkCommandBuffer& cmdBuf)
{
// Prepare new UBO contents on host.
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
CameraMatrices hostUBO = {};
hostUBO.view = CameraManip.getMatrix();
hostUBO.proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
// hostUBO.proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
hostUBO.viewInverse = nvmath::invert(hostUBO.view);
// #VKRay
hostUBO.projInverse = nvmath::invert(hostUBO.proj);
GlobalUniforms hostUBO = {};
const auto& view = CameraManip.getMatrix();
const auto& proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
// proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
hostUBO.viewProj = proj * view;
hostUBO.viewInverse = nvmath::invert(view);
hostUBO.projInverse = nvmath::invert(proj);
// UBO on the device, and what stages access it.
VkBuffer deviceUBO = m_cameraMat.buffer;
VkBuffer deviceUBO = m_bGlobals.buffer;
auto uboUsageStages = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR;
// Ensure that the modified UBO is not visible to previous frames.
@ -96,7 +86,7 @@ void HelloVulkan::updateUniformBuffer(const VkCommandBuffer& cmdBuf)
// Schedule the host-to-device upload. (hostUBO is copied into the cmd
// buffer so it is okay to deallocate when the function returns).
vkCmdUpdateBuffer(cmdBuf, m_cameraMat.buffer, 0, sizeof(CameraMatrices), &hostUBO);
vkCmdUpdateBuffer(cmdBuf, m_bGlobals.buffer, 0, sizeof(GlobalUniforms), &hostUBO);
// Making sure the updated UBO will be visible.
VkBufferMemoryBarrier afterBarrier{VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER};
@ -116,16 +106,17 @@ void HelloVulkan::createDescriptorSetLayout()
{
auto nbTxt = static_cast<uint32_t>(m_textures.size());
// Camera matrices (binding = 0)
m_descSetLayoutBind.addBinding(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_RAYGEN_BIT_KHR);
// Scene description (binding = 1)
m_descSetLayoutBind.addBinding(1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
// Camera matrices
m_descSetLayoutBind.addBinding(SceneBindings::eGlobals, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_RAYGEN_BIT_KHR);
// Obj descriptions
m_descSetLayoutBind.addBinding(SceneBindings::eObjDescs, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Textures (binding = 2)
m_descSetLayoutBind.addBinding(2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, nbTxt,
// Textures
m_descSetLayoutBind.addBinding(SceneBindings::eTextures, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, nbTxt,
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Storing spheres (binding = 3)
m_descSetLayoutBind.addBinding(3, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
// Implicit geometries
m_descSetLayoutBind.addBinding(eImplicit, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR);
@ -142,11 +133,11 @@ void HelloVulkan::updateDescriptorSet()
std::vector<VkWriteDescriptorSet> writes;
// Camera matrices and scene description
VkDescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 0, &dbiUnif));
VkDescriptorBufferInfo dbiUnif{m_bGlobals.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, SceneBindings::eGlobals, &dbiUnif));
VkDescriptorBufferInfo dbiSceneDesc{m_sceneDesc.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 1, &dbiSceneDesc));
VkDescriptorBufferInfo dbiSceneDesc{m_bObjDesc.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, SceneBindings::eObjDescs, &dbiSceneDesc));
// All texture samplers
std::vector<VkDescriptorImageInfo> diit;
@ -154,10 +145,10 @@ void HelloVulkan::updateDescriptorSet()
{
diit.emplace_back(texture.descriptor);
}
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 2, diit.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, SceneBindings::eTextures, diit.data()));
VkDescriptorBufferInfo dbiSpheres{m_spheresBuffer.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 3, &dbiSpheres));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, eImplicit, &dbiSpheres));
// Writing the information
vkUpdateDescriptorSets(m_device, static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
@ -169,7 +160,7 @@ void HelloVulkan::updateDescriptorSet()
//
void HelloVulkan::createGraphicsPipeline()
{
VkPushConstantRange pushConstantRanges = {VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(ObjPushConstant)};
VkPushConstantRange pushConstantRanges = {VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushConstantRaster)};
// Creating the Pipeline Layout
VkPipelineLayoutCreateInfo createInfo{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
@ -229,30 +220,35 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
model.indexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_indices, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | rayTracingFlags);
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
// Creates all textures found
uint32_t txtOffset = static_cast<uint32_t>(m_textures.size());
// Creates all textures found and find the offset for this model
auto txtOffset = static_cast<uint32_t>(m_textures.size());
createTextureImages(cmdBuf, loader.m_textures);
cmdBufGet.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
std::string objNb = std::to_string(m_objModel.size());
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb).c_str()));
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb).c_str()));
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb).c_str()));
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb).c_str()));
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb)));
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb)));
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb)));
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb)));
// Keeping transformation matrix of the instance
ObjInstance instance;
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
instance.transform = transform;
instance.transformIT = nvmath::transpose(nvmath::invert(transform));
instance.txtOffset = txtOffset;
instance.vertices = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
instance.indices = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
instance.materials = nvvk::getBufferDeviceAddress(m_device, model.matColorBuffer.buffer);
instance.materialIndices = nvvk::getBufferDeviceAddress(m_device, model.matIndexBuffer.buffer);
instance.transform = transform;
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
m_instances.push_back(instance);
// Creating information for device access
ObjDesc desc;
desc.txtOffset = txtOffset;
desc.vertexAddress = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
desc.indexAddress = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
desc.materialAddress = nvvk::getBufferDeviceAddress(m_device, model.matColorBuffer.buffer);
desc.materialIndexAddress = nvvk::getBufferDeviceAddress(m_device, model.matIndexBuffer.buffer);
// Keeping the obj host model and device description
m_objModel.emplace_back(model);
m_objInstance.emplace_back(instance);
m_objDesc.emplace_back(desc);
}
@ -262,9 +258,9 @@ void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform
//
void HelloVulkan::createUniformBuffer()
{
m_cameraMat = m_alloc.createBuffer(sizeof(CameraMatrices), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
m_debug.setObjectName(m_cameraMat.buffer, "cameraMat");
m_bGlobals = m_alloc.createBuffer(sizeof(GlobalUniforms), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
m_debug.setObjectName(m_bGlobals.buffer, "Globals");
}
//--------------------------------------------------------------------------------------------------
@ -273,15 +269,15 @@ void HelloVulkan::createUniformBuffer()
// - Transformation
// - Offset for texture
//
void HelloVulkan::createSceneDescriptionBuffer()
void HelloVulkan::createObjDescriptionBuffer()
{
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
auto cmdBuf = cmdGen.createCommandBuffer();
m_sceneDesc = m_alloc.createBuffer(cmdBuf, m_objInstance, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
m_bObjDesc = m_alloc.createBuffer(cmdBuf, m_objDesc, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
cmdGen.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
m_debug.setObjectName(m_sceneDesc.buffer, "sceneDesc");
m_debug.setObjectName(m_bObjDesc.buffer, "ObjDescs");
}
//--------------------------------------------------------------------------------------------------
@ -367,8 +363,8 @@ void HelloVulkan::destroyResources()
vkDestroyDescriptorPool(m_device, m_descPool, nullptr);
vkDestroyDescriptorSetLayout(m_device, m_descSetLayout, nullptr);
m_alloc.destroy(m_cameraMat);
m_alloc.destroy(m_sceneDesc);
m_alloc.destroy(m_bGlobals);
m_alloc.destroy(m_bObjDesc);
for(auto& m : m_objModel)
{
@ -427,15 +423,16 @@ void HelloVulkan::rasterize(const VkCommandBuffer& cmdBuf)
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1, &m_descSet, 0, nullptr);
uint32_t nbInst = static_cast<uint32_t>(m_objInstance.size() - 1); // Remove the implicit object
uint32_t nbInst = static_cast<uint32_t>(m_instances.size() - 1); // Remove the implicit object
for(uint32_t i = 0; i < nbInst; ++i)
{
auto& inst = m_objInstance[i];
auto& model = m_objModel[inst.objIndex];
m_pushConstant.instanceId = i; // Telling which instance is drawn
auto& inst = m_instances[i];
auto& model = m_objModel[inst.objIndex];
m_pcRaster.objIndex = inst.objIndex; // Telling which object is drawn
m_pcRaster.modelMatrix = inst.transform;
vkCmdPushConstants(cmdBuf, m_pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0,
sizeof(ObjPushConstant), &m_pushConstant);
sizeof(PushConstantRaster), &m_pcRaster);
vkCmdBindVertexBuffers(cmdBuf, 0, 1, &model.vertexBuffer.buffer, &offset);
vkCmdBindIndexBuffer(cmdBuf, model.indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdBuf, model.nbIndices, 1, 0, 0, 0);
@ -625,7 +622,7 @@ auto HelloVulkan::objectToVkGeometryKHR(const ObjModel& model)
// Describe buffer as array of VertexObj.
VkAccelerationStructureGeometryTrianglesDataKHR triangles{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR};
triangles.vertexFormat = VK_FORMAT_R32G32B32A32_SFLOAT; // vec3 vertex position data.
triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT; // vec3 vertex position data.
triangles.vertexData.deviceAddress = vertexAddress;
triangles.vertexStride = sizeof(VertexObj);
// Describe index data (32-bit unsigned int)
@ -659,7 +656,7 @@ auto HelloVulkan::objectToVkGeometryKHR(const ObjModel& model)
//--------------------------------------------------------------------------------------------------
// Returning the ray tracing geometry used for the BLAS, containing all spheres
//
nvvk::RaytracingBuilderKHR::BlasInput HelloVulkan::sphereToVkGeometryKHR()
auto HelloVulkan::sphereToVkGeometryKHR()
{
VkDeviceAddress dataAddress = nvvk::getBufferDeviceAddress(m_device, m_spheresAabbBuffer.buffer);
@ -754,13 +751,19 @@ void HelloVulkan::createSpheres(uint32_t nbSpheres)
// Adding an extra instance to get access to the material buffers
ObjDesc objDesc{};
objDesc.materialAddress = nvvk::getBufferDeviceAddress(m_device, m_spheresMatColorBuffer.buffer);
objDesc.materialIndexAddress = nvvk::getBufferDeviceAddress(m_device, m_spheresMatIndexBuffer.buffer);
m_objDesc.emplace_back(objDesc);
ObjInstance instance{};
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
instance.materials = nvvk::getBufferDeviceAddress(m_device, m_spheresMatColorBuffer.buffer);
instance.materialIndices = nvvk::getBufferDeviceAddress(m_device, m_spheresMatIndexBuffer.buffer);
m_objInstance.emplace_back(instance);
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
m_instances.emplace_back(instance);
}
//--------------------------------------------------------------------------------------------------
//
//
void HelloVulkan::createBottomLevelAS()
{
// BLAS - Storing each primitive in a geometry
@ -783,33 +786,38 @@ void HelloVulkan::createBottomLevelAS()
m_rtBuilder.buildBlas(allBlas, VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR);
}
//--------------------------------------------------------------------------------------------------
//
//
void HelloVulkan::createTopLevelAS()
{
std::vector<VkAccelerationStructureInstanceKHR> tlas;
auto nbObj = static_cast<uint32_t>(m_objInstance.size()) - 1;
auto nbObj = static_cast<uint32_t>(m_instances.size()) - 1;
tlas.reserve(nbObj);
for(uint32_t i = 0; i < nbObj; i++)
{
VkAccelerationStructureInstanceKHR rayInst;
rayInst.transform = nvvk::toTransformMatrixKHR(m_objInstance[i].transform); // Position of the instance
rayInst.instanceCustomIndex = i; // gl_InstanceCustomIndexEXT
rayInst.accelerationStructureReference = m_rtBuilder.getBlasDeviceAddress(m_objInstance[i].objIndex);
const auto& inst = m_instances[i];
VkAccelerationStructureInstanceKHR rayInst{};
rayInst.transform = nvvk::toTransformMatrixKHR(inst.transform); // Position of the instance
rayInst.instanceCustomIndex = inst.objIndex; // gl_InstanceCustomIndexEXT
rayInst.accelerationStructureReference = m_rtBuilder.getBlasDeviceAddress(inst.objIndex);
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
rayInst.mask = 0xFF; // Only be hit if rayMask & instance.mask != 0
rayInst.instanceShaderBindingTableRecordOffset = 0; // We will use the same hit group for all objects
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
rayInst.mask = 0xFF;
tlas.emplace_back(rayInst);
}
// Add the blas containing all spheres
// Add the blas containing all implicit objects
{
VkAccelerationStructureInstanceKHR rayInst;
rayInst.transform = nvvk::toTransformMatrixKHR(m_objInstance[0].transform); // Position of the instance
rayInst.instanceCustomIndex = nbObj; // gl_InstanceCustomIndexEXT
VkAccelerationStructureInstanceKHR rayInst{};
rayInst.transform = nvvk::toTransformMatrixKHR(nvmath::mat4f(1)); // (identity)
rayInst.instanceCustomIndex = nbObj; // nbObj == last object == implicit
rayInst.accelerationStructureReference = m_rtBuilder.getBlasDeviceAddress(static_cast<uint32_t>(m_objModel.size()));
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
rayInst.mask = 0xFF; // Only be hit if rayMask & instance.mask != 0
rayInst.instanceShaderBindingTableRecordOffset = 1; // We will use the same hit group for all objects
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
rayInst.mask = 0xFF;
tlas.emplace_back(rayInst);
}
@ -823,9 +831,9 @@ void HelloVulkan::createRtDescriptorSet()
{
// Top-level acceleration structure, usable by both the ray generation and the closest hit (to
// shoot shadow rays)
m_rtDescSetLayoutBind.addBinding(0, VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1,
m_rtDescSetLayoutBind.addBinding(RtxBindings::eTlas, VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1,
VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR); // TLAS
m_rtDescSetLayoutBind.addBinding(1, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1,
m_rtDescSetLayoutBind.addBinding(RtxBindings::eOutImage, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1,
VK_SHADER_STAGE_RAYGEN_BIT_KHR); // Output image
m_rtDescPool = m_rtDescSetLayoutBind.createPool(m_device);
@ -845,8 +853,8 @@ void HelloVulkan::createRtDescriptorSet()
VkDescriptorImageInfo imageInfo{{}, m_offscreenColor.descriptor.imageView, VK_IMAGE_LAYOUT_GENERAL};
std::vector<VkWriteDescriptorSet> writes;
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 0, &descASInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 1, &imageInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, RtxBindings::eTlas, &descASInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, RtxBindings::eOutImage, &imageInfo));
vkUpdateDescriptorSets(m_device, static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
}
@ -859,7 +867,7 @@ void HelloVulkan::updateRtDescriptorSet()
{
// (1) Output buffer
VkDescriptorImageInfo imageInfo{{}, m_offscreenColor.descriptor.imageView, VK_IMAGE_LAYOUT_GENERAL};
VkWriteDescriptorSet wds = m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 1, &imageInfo);
VkWriteDescriptorSet wds = m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, RtxBindings::eOutImage, &imageInfo);
vkUpdateDescriptorSets(m_device, 1, &wds, 0, nullptr);
}
@ -947,7 +955,7 @@ void HelloVulkan::createRtPipeline()
// Push constant: we want to be able to update constants used by the shaders
VkPushConstantRange pushConstant{VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR,
0, sizeof(RtPushConstant)};
0, sizeof(PushConstantRay)};
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
@ -1013,7 +1021,7 @@ void HelloVulkan::createRtShaderBindingTable()
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
| VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
m_debug.setObjectName(m_rtSBTBuffer.buffer, std::string("SBT").c_str());
m_debug.setObjectName(m_rtSBTBuffer.buffer, std::string("SBT"));
// Map the SBT buffer and write in the handles.
void* mapped = m_alloc.map(m_rtSBTBuffer);
@ -1034,10 +1042,10 @@ void HelloVulkan::raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& c
{
m_debug.beginLabel(cmdBuf, "Ray trace");
// Initializing push constant values
m_rtPushConstants.clearColor = clearColor;
m_rtPushConstants.lightPosition = m_pushConstant.lightPosition;
m_rtPushConstants.lightIntensity = m_pushConstant.lightIntensity;
m_rtPushConstants.lightType = m_pushConstant.lightType;
m_pcRay.clearColor = clearColor;
m_pcRay.lightPosition = m_pcRaster.lightPosition;
m_pcRay.lightIntensity = m_pcRaster.lightIntensity;
m_pcRay.lightType = m_pcRaster.lightType;
std::vector<VkDescriptorSet> descSets{m_rtDescSet, m_descSet};
@ -1046,7 +1054,7 @@ void HelloVulkan::raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& c
(uint32_t)descSets.size(), descSets.data(), 0, nullptr);
vkCmdPushConstants(cmdBuf, m_rtPipelineLayout,
VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR,
0, sizeof(RtPushConstant), &m_rtPushConstants);
0, sizeof(PushConstantRay), &m_pcRay);
// Size of a program identifier

View file

@ -24,6 +24,7 @@
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/memallocator_dma_vk.hpp"
#include "nvvk/resourceallocator_vk.hpp"
#include "shaders/host_device.h"
// #VKRay
#include "nvvk/raytraceKHR_vk.hpp"
@ -44,7 +45,7 @@ public:
void loadModel(const std::string& filename, nvmath::mat4f transform = nvmath::mat4f(1));
void updateDescriptorSet();
void createUniformBuffer();
void createSceneDescriptionBuffer();
void createObjDescriptionBuffer();
void createTextureImages(const VkCommandBuffer& cmdBuf, const std::vector<std::string>& textures);
void updateUniformBuffer(const VkCommandBuffer& cmdBuf);
void onResize(int /*w*/, int /*h*/) override;
@ -62,32 +63,27 @@ public:
nvvk::Buffer matIndexBuffer; // Device buffer of array of 'Wavefront material'
};
// Instance of the OBJ
struct ObjInstance
{
nvmath::mat4f transform{1}; // Position of the instance
nvmath::mat4f transformIT{1}; // Inverse transpose
uint32_t objIndex{0}; // Reference to the `m_objModel`
uint32_t txtOffset{0}; // Offset in `m_textures`
VkDeviceAddress vertices{0};
VkDeviceAddress indices{0};
VkDeviceAddress materials{0};
VkDeviceAddress materialIndices{0};
nvmath::mat4f transform; // Matrix of the instance
uint32_t objIndex{0}; // Model index reference
};
// Information pushed at each draw call
struct ObjPushConstant
{
nvmath::vec3f lightPosition{10.f, 55.f, 8.f};
int instanceId{0}; // To retrieve the transformation matrix
float lightIntensity{1000.f};
int lightType{0}; // 0: point, 1: infinite
PushConstantRaster m_pcRaster{
{1}, // Identity matrix
{10.f, 55.f, 8.f}, // light position
0, // instance Id
1000.f, // light intensity
0 // light type
};
ObjPushConstant m_pushConstant;
// Array of objects and instances in the scene
std::vector<ObjModel> m_objModel;
std::vector<ObjInstance> m_objInstance;
std::vector<ObjModel> m_objModel; // Model on host
std::vector<ObjDesc> m_objDesc; // Model description for device access
std::vector<ObjInstance> m_instances; // Scene model instances
// Graphic pipeline
VkPipelineLayout m_pipelineLayout;
@ -97,8 +93,8 @@ public:
VkDescriptorSetLayout m_descSetLayout;
VkDescriptorSet m_descSet;
nvvk::Buffer m_cameraMat; // Device-Host of the camera matrices
nvvk::Buffer m_sceneDesc; // Device buffer of the OBJ instances
nvvk::Buffer m_bGlobals; // Device-Host of the camera matrices
nvvk::Buffer m_bObjDesc; // Device buffer of the OBJ descriptions
std::vector<nvvk::Texture> m_textures; // vector of all textures of the scene
@ -107,7 +103,7 @@ public:
nvvk::DebugUtil m_debug; // Utility to name objects
// #Post
// #Post - Draw the rendered image on a quad using a tonemapper
void createOffscreenRender();
void createPostPipeline();
void createPostDescriptor();
@ -150,33 +146,16 @@ public:
VkPipeline m_rtPipeline;
nvvk::Buffer m_rtSBTBuffer;
struct RtPushConstant
{
nvmath::vec4f clearColor;
nvmath::vec3f lightPosition;
float lightIntensity{100.0f};
int lightType{0};
} m_rtPushConstants;
// Push constant for ray tracer
PushConstantRay m_pcRay{};
struct Sphere
{
nvmath::vec3f center;
float radius{0};
};
struct Aabb
{
nvmath::vec3f minimum;
nvmath::vec3f maximum;
};
nvvk::RaytracingBuilderKHR::BlasInput sphereToVkGeometryKHR();
std::vector<Sphere> m_spheres; // All spheres
nvvk::Buffer m_spheresBuffer; // Buffer holding the spheres
nvvk::Buffer m_spheresAabbBuffer; // Buffer of all Aabb
nvvk::Buffer m_spheresMatColorBuffer; // Multiple materials
nvvk::Buffer m_spheresMatIndexBuffer; // Define which sphere uses which material
void createSpheres(uint32_t nbSpheres);
void createSpheres(uint32_t nbSpheres);
auto sphereToVkGeometryKHR();
};

View file

@ -56,12 +56,12 @@ void renderUI(HelloVulkan& helloVk)
ImGuiH::CameraWidget();
if(ImGui::CollapsingHeader("Light"))
{
ImGui::RadioButton("Point", &helloVk.m_pushConstant.lightType, 0);
ImGui::RadioButton("Point", &helloVk.m_pcRaster.lightType, 0);
ImGui::SameLine();
ImGui::RadioButton("Infinite", &helloVk.m_pushConstant.lightType, 1);
ImGui::RadioButton("Infinite", &helloVk.m_pcRaster.lightType, 1);
ImGui::SliderFloat3("Position", &helloVk.m_pushConstant.lightPosition.x, -20.f, 20.f);
ImGui::SliderFloat("Intensity", &helloVk.m_pushConstant.lightIntensity, 0.f, 150.f);
ImGui::SliderFloat3("Position", &helloVk.m_pcRaster.lightPosition.x, -20.f, 20.f);
ImGui::SliderFloat("Intensity", &helloVk.m_pcRaster.lightIntensity, 0.f, 150.f);
}
ImGui::Text("Nb Spheres and Cubes: %llu", helloVk.m_spheres.size());
}
@ -167,7 +167,7 @@ int main(int argc, char** argv)
helloVk.createDescriptorSetLayout();
helloVk.createGraphicsPipeline();
helloVk.createUniformBuffer();
helloVk.createSceneDescriptionBuffer();
helloVk.createObjDescriptionBuffer();
helloVk.updateDescriptorSet();
// #VKRay

View file

@ -29,59 +29,55 @@
#include "wavefront.glsl"
layout(push_constant) uniform shaderInformation
layout(push_constant) uniform _PushConstantRaster
{
vec3 lightPosition;
uint instanceId;
float lightIntensity;
int lightType;
}
pushC;
PushConstantRaster pcRaster;
};
// clang-format off
// Incoming
layout(location = 1) in vec2 fragTexCoord;
layout(location = 2) in vec3 fragNormal;
layout(location = 3) in vec3 viewDir;
layout(location = 4) in vec3 worldPos;
layout(location = 1) in vec3 i_worldPos;
layout(location = 2) in vec3 i_worldNrm;
layout(location = 3) in vec3 i_viewDir;
layout(location = 4) in vec2 i_texCoord;
// Outgoing
layout(location = 0) out vec4 outColor;
layout(location = 0) out vec4 o_color;
layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object
layout(buffer_reference, scalar) buffer Indices {uint i[]; }; // Triangle indices
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(binding = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
layout(binding = 2) uniform sampler2D[] textureSamplers;
layout(binding = eObjDescs, scalar) buffer ObjDesc_ { ObjDesc i[]; } objDesc;
layout(binding = eTextures) uniform sampler2D[] textureSamplers;
// clang-format on
void main()
{
// Material of the object
SceneDesc objResource = sceneDesc.i[pushC.instanceId];
ObjDesc objResource = objDesc.i[pcRaster.objIndex];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
int matIndex = matIndices.i[gl_PrimitiveID];
WaveFrontMaterial mat = materials.m[matIndex];
vec3 N = normalize(fragNormal);
vec3 N = normalize(i_worldNrm);
// Vector toward light
vec3 L;
float lightIntensity = pushC.lightIntensity;
if(pushC.lightType == 0)
float lightIntensity = pcRaster.lightIntensity;
if(pcRaster.lightType == 0)
{
vec3 lDir = pushC.lightPosition - worldPos;
vec3 lDir = pcRaster.lightPosition - i_worldPos;
float d = length(lDir);
lightIntensity = pushC.lightIntensity / (d * d);
lightIntensity = pcRaster.lightIntensity / (d * d);
L = normalize(lDir);
}
else
{
L = normalize(pushC.lightPosition - vec3(0));
L = normalize(pcRaster.lightPosition);
}
@ -89,15 +85,15 @@ void main()
vec3 diffuse = computeDiffuse(mat, L, N);
if(mat.textureId >= 0)
{
int txtOffset = sceneDesc.i[pushC.instanceId].txtOffset;
int txtOffset = objDesc.i[pcRaster.objIndex].txtOffset;
uint txtId = txtOffset + mat.textureId;
vec3 diffuseTxt = texture(textureSamplers[nonuniformEXT(txtId)], fragTexCoord).xyz;
vec3 diffuseTxt = texture(textureSamplers[nonuniformEXT(txtId)], i_texCoord).xyz;
diffuse *= diffuseTxt;
}
// Specular
vec3 specular = computeSpecular(mat, viewDir, L, N);
vec3 specular = computeSpecular(mat, i_viewDir, L, N);
// Result
outColor = vec4(lightIntensity * (diffuse + specular), 1);
o_color = vec4(lightIntensity * (diffuse + specular), 1);
}

View file

@ -0,0 +1,132 @@
/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef COMMON_HOST_DEVICE
#define COMMON_HOST_DEVICE
#ifdef __cplusplus
#include "nvmath/nvmath.h"
// GLSL Type
using vec2 = nvmath::vec2f;
using vec3 = nvmath::vec3f;
using vec4 = nvmath::vec4f;
using mat4 = nvmath::mat4f;
using uint = unsigned int;
#endif
// clang-format off
#ifdef __cplusplus // Descriptor binding helper for C++ and GLSL
#define START_BINDING(a) enum a {
#define END_BINDING() }
#else
#define START_BINDING(a) const uint
#define END_BINDING()
#endif
START_BINDING(SceneBindings)
eGlobals = 0, // Global uniform containing camera matrices
eObjDescs = 1, // Access to the object descriptions
eTextures = 2, // Access to textures
eImplicit = 3 // All implicit objects
END_BINDING();
START_BINDING(RtxBindings)
eTlas = 0, // Top-level acceleration structure
eOutImage = 1 // Ray tracer output image
END_BINDING();
// clang-format on
// Information of a obj model when referenced in a shader
struct ObjDesc
{
int txtOffset; // Texture index offset in the array of textures
uint64_t vertexAddress; // Address of the Vertex buffer
uint64_t indexAddress; // Address of the index buffer
uint64_t materialAddress; // Address of the material buffer
uint64_t materialIndexAddress; // Address of the triangle material index buffer
};
// Uniform buffer set at each frame
struct GlobalUniforms
{
mat4 viewProj; // Camera view * projection
mat4 viewInverse; // Camera inverse view matrix
mat4 projInverse; // Camera inverse projection matrix
};
// Push constant structure for the raster
struct PushConstantRaster
{
mat4 modelMatrix; // matrix of the instance
vec3 lightPosition;
uint objIndex;
float lightIntensity;
int lightType;
};
// Push constant structure for the ray tracer
struct PushConstantRay
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
};
struct Vertex // See ObjLoader, copy of VertexObj, could be compressed for device
{
vec3 pos;
vec3 nrm;
vec3 color;
vec2 texCoord;
};
struct WaveFrontMaterial // See ObjLoader, copy of MaterialObj, could be compressed for device
{
vec3 ambient;
vec3 diffuse;
vec3 specular;
vec3 transmittance;
vec3 emission;
float shininess;
float ior; // index of refraction
float dissolve; // 1 == opaque; 0 == fully transparent
int illum; // illumination model (see http://www.fileformat.info/format/material/)
int textureId;
};
struct Sphere
{
vec3 center;
float radius;
};
struct Aabb
{
vec3 minimum;
vec3 maximum;
};
#define KIND_SPHERE 0
#define KIND_CUBE 1
#endif

View file

@ -21,18 +21,3 @@ struct hitPayload
{
vec3 hitValue;
};
struct Sphere
{
vec3 center;
float radius;
};
struct Aabb
{
vec3 minimum;
vec3 maximum;
};
#define KIND_SPHERE 0
#define KIND_CUBE 1

View file

@ -22,7 +22,6 @@
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
@ -39,25 +38,18 @@ layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of
layout(buffer_reference, scalar) buffer Indices {ivec3 i[]; }; // Triangle indices
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 1, set = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
layout(binding = 2, set = 1) uniform sampler2D textureSamplers[];
// clang-format on
layout(set = 0, binding = eTlas) uniform accelerationStructureEXT topLevelAS;
layout(set = 1, binding = eObjDescs, scalar) buffer ObjDesc_ { ObjDesc i[]; } objDesc;
layout(set = 1, binding = eTextures) uniform sampler2D textureSamplers[];
layout(push_constant) uniform Constants
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
}
pushC;
layout(push_constant) uniform _PushConstantRay { PushConstantRay pcRay; };
// clang-format on
void main()
{
// Object data
SceneDesc objResource = sceneDesc.i[gl_InstanceCustomIndexEXT];
ObjDesc objResource = objDesc.i[gl_InstanceCustomIndexEXT];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
Indices indices = Indices(objResource.indexAddress);
@ -73,32 +65,29 @@ void main()
const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y);
// Computing the normal at hit position
vec3 normal = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z;
// Transforming the normal to world space
normal = normalize(vec3(sceneDesc.i[gl_InstanceCustomIndexEXT].transfoIT * vec4(normal, 0.0)));
// Computing the coordinates of the hit position
vec3 worldPos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z;
// Transforming the position to world space
worldPos = vec3(sceneDesc.i[gl_InstanceCustomIndexEXT].transfo * vec4(worldPos, 1.0));
const vec3 pos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z;
const vec3 worldPos = vec3(gl_ObjectToWorldEXT * vec4(pos, 1.0)); // Transforming the position to world space
// Computing the normal at hit position
const vec3 nrm = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z;
const vec3 worldNrm = normalize(vec3(nrm * gl_WorldToObjectEXT)); // Transforming the normal to world space
// Vector toward the light
vec3 L;
float lightIntensity = pushC.lightIntensity;
float lightIntensity = pcRay.lightIntensity;
float lightDistance = 100000.0;
// Point light
if(pushC.lightType == 0)
if(pcRay.lightType == 0)
{
vec3 lDir = pushC.lightPosition - worldPos;
vec3 lDir = pcRay.lightPosition - worldPos;
lightDistance = length(lDir);
lightIntensity = pushC.lightIntensity / (lightDistance * lightDistance);
lightIntensity = pcRay.lightIntensity / (lightDistance * lightDistance);
L = normalize(lDir);
}
else // Directional light
{
L = normalize(pushC.lightPosition - vec3(0));
L = normalize(pcRay.lightPosition);
}
// Material of the object
@ -107,10 +96,10 @@ void main()
// Diffuse
vec3 diffuse = computeDiffuse(mat, L, normal);
vec3 diffuse = computeDiffuse(mat, L, worldNrm);
if(mat.textureId >= 0)
{
uint txtId = mat.textureId + sceneDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
uint txtId = mat.textureId + objDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z;
diffuse *= texture(textureSamplers[nonuniformEXT(txtId)], texCoord).xyz;
}
@ -119,7 +108,7 @@ void main()
float attenuation = 1;
// Tracing shadow ray only if the light is visible from the surface
if(dot(normal, L) > 0)
if(dot(worldNrm, L) > 0)
{
float tMin = 0.001;
float tMax = lightDistance;
@ -147,7 +136,7 @@ void main()
else
{
// Specular
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, normal);
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, worldNrm);
}
}

View file

@ -20,21 +20,21 @@
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 1, set = 0, rgba32f) uniform image2D image;
// clang-format off
layout(location = 0) rayPayloadEXT hitPayload prd;
layout(binding = 0, set = 1) uniform CameraProperties
{
mat4 view;
mat4 proj;
mat4 viewInverse;
mat4 projInverse;
}
cam;
layout(set = 0, binding = eTlas) uniform accelerationStructureEXT topLevelAS;
layout(set = 0, binding = eOutImage, rgba32f) uniform image2D image;
layout(set = 1, binding = eGlobals) uniform _GlobalUniforms { GlobalUniforms uni; };
layout(push_constant) uniform _PushConstantRay { PushConstantRay pcRay; };
// clang-format on
void main()
{
@ -42,9 +42,9 @@ void main()
const vec2 inUV = pixelCenter / vec2(gl_LaunchSizeEXT.xy);
vec2 d = inUV * 2.0 - 1.0;
vec4 origin = cam.viewInverse * vec4(0, 0, 0, 1);
vec4 target = cam.projInverse * vec4(d.x, d.y, 1, 1);
vec4 direction = cam.viewInverse * vec4(normalize(target.xyz), 0);
vec4 origin = uni.viewInverse * vec4(0, 0, 0, 1);
vec4 target = uni.projInverse * vec4(d.x, d.y, 1, 1);
vec4 direction = uni.viewInverse * vec4(normalize(target.xyz), 0);
uint rayFlags = gl_RayFlagsOpaqueEXT;
float tMin = 0.001;

View file

@ -28,7 +28,7 @@
#include "wavefront.glsl"
layout(binding = 3, set = 1, scalar) buffer allSpheres_
layout(set = 1, binding = eImplicit, scalar) buffer allSpheres_
{
Sphere allSpheres[];
};

View file

@ -20,16 +20,19 @@
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
layout(location = 0) rayPayloadInEXT hitPayload prd;
layout(push_constant) uniform Constants
layout(push_constant) uniform _PushConstantRay
{
vec4 clearColor;
PushConstantRay pcRay;
};
void main()
{
prd.hitValue = clearColor.xyz * 0.8;
prd.hitValue = pcRay.clearColor.xyz * 0.8;
}

View file

@ -22,6 +22,7 @@
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
@ -39,27 +40,19 @@ layout(buffer_reference, scalar) buffer Indices {uint i[]; }; // Triangle indice
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 1, set = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
layout(binding = 2, set = 1) uniform sampler2D textureSamplers[];
layout(binding = 3, set = 1, scalar) buffer allSpheres_ {Sphere i[];} allSpheres;
layout(set = 0, binding = eTlas) uniform accelerationStructureEXT topLevelAS;
layout(set = 1, binding = eObjDescs, scalar) buffer ObjDesc_ { ObjDesc i[]; } objDesc;
layout(set = 1, binding = eTextures) uniform sampler2D textureSamplers[];
layout(set = 1, binding = eImplicit, scalar) buffer allSpheres_ {Sphere i[];} allSpheres;
layout(push_constant) uniform _PushConstantRay { PushConstantRay pcRay; };
// clang-format on
layout(push_constant) uniform Constants
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
}
pushC;
void main()
{
// Object data
SceneDesc objResource = sceneDesc.i[gl_InstanceCustomIndexEXT];
ObjDesc objResource = objDesc.i[gl_InstanceCustomIndexEXT];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
@ -68,32 +61,32 @@ void main()
Sphere instance = allSpheres.i[gl_PrimitiveID];
// Computing the normal at hit position
vec3 normal = normalize(worldPos - instance.center);
vec3 worldNrm = normalize(worldPos - instance.center);
// Computing the normal for a cube
if(gl_HitKindEXT == KIND_CUBE) // Aabb
{
vec3 absN = abs(normal);
vec3 absN = abs(worldNrm);
float maxC = max(max(absN.x, absN.y), absN.z);
normal = (maxC == absN.x) ? vec3(sign(normal.x), 0, 0) :
(maxC == absN.y) ? vec3(0, sign(normal.y), 0) : vec3(0, 0, sign(normal.z));
worldNrm = (maxC == absN.x) ? vec3(sign(worldNrm.x), 0, 0) :
(maxC == absN.y) ? vec3(0, sign(worldNrm.y), 0) : vec3(0, 0, sign(worldNrm.z));
}
// Vector toward the light
vec3 L;
float lightIntensity = pushC.lightIntensity;
float lightIntensity = pcRay.lightIntensity;
float lightDistance = 100000.0;
// Point light
if(pushC.lightType == 0)
if(pcRay.lightType == 0)
{
vec3 lDir = pushC.lightPosition - worldPos;
vec3 lDir = pcRay.lightPosition - worldPos;
lightDistance = length(lDir);
lightIntensity = pushC.lightIntensity / (lightDistance * lightDistance);
lightIntensity = pcRay.lightIntensity / (lightDistance * lightDistance);
L = normalize(lDir);
}
else // Directional light
{
L = normalize(pushC.lightPosition - vec3(0));
L = normalize(pcRay.lightPosition);
}
// Material of the object
@ -101,12 +94,12 @@ void main()
WaveFrontMaterial mat = materials.m[matIdx];
// Diffuse
vec3 diffuse = computeDiffuse(mat, L, normal);
vec3 diffuse = computeDiffuse(mat, L, worldNrm);
vec3 specular = vec3(0);
float attenuation = 0.3;
// Tracing shadow ray only if the light is visible from the surface
if(dot(normal, L) > 0)
if(dot(worldNrm, L) > 0)
{
float tMin = 0.001;
float tMax = lightDistance;
@ -135,7 +128,7 @@ void main()
{
attenuation = 1;
// Specular
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, normal);
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, worldNrm);
}
}

View file

@ -26,38 +26,26 @@
#include "wavefront.glsl"
// clang-format off
layout(binding = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
// clang-format on
layout(binding = 0) uniform UniformBufferObject
layout(binding = 0) uniform _GlobalUniforms
{
mat4 view;
mat4 proj;
mat4 viewI;
}
ubo;
GlobalUniforms uni;
};
layout(push_constant) uniform shaderInformation
layout(push_constant) uniform _PushConstantRaster
{
vec3 lightPosition;
uint instanceId;
float lightIntensity;
int lightType;
}
pushC;
PushConstantRaster pcRaster;
};
layout(location = 0) in vec3 inPosition;
layout(location = 1) in vec3 inNormal;
layout(location = 2) in vec3 inColor;
layout(location = 3) in vec2 inTexCoord;
layout(location = 0) in vec3 i_position;
layout(location = 1) in vec3 i_normal;
layout(location = 2) in vec3 i_color;
layout(location = 3) in vec2 i_texCoord;
//layout(location = 0) flat out int matIndex;
layout(location = 1) out vec2 fragTexCoord;
layout(location = 2) out vec3 fragNormal;
layout(location = 3) out vec3 viewDir;
layout(location = 4) out vec3 worldPos;
layout(location = 1) out vec3 o_worldPos;
layout(location = 2) out vec3 o_worldNrm;
layout(location = 3) out vec3 o_viewDir;
layout(location = 4) out vec2 o_texCoord;
out gl_PerVertex
{
@ -67,16 +55,12 @@ out gl_PerVertex
void main()
{
mat4 objMatrix = sceneDesc.i[pushC.instanceId].transfo;
mat4 objMatrixIT = sceneDesc.i[pushC.instanceId].transfoIT;
vec3 origin = vec3(uni.viewInverse * vec4(0, 0, 0, 1));
vec3 origin = vec3(ubo.viewI * vec4(0, 0, 0, 1));
o_worldPos = vec3(pcRaster.modelMatrix * vec4(i_position, 1.0));
o_viewDir = vec3(o_worldPos - origin);
o_texCoord = i_texCoord;
o_worldNrm = mat3(pcRaster.modelMatrix) * i_normal;
worldPos = vec3(objMatrix * vec4(inPosition, 1.0));
viewDir = vec3(worldPos - origin);
fragTexCoord = inTexCoord;
fragNormal = vec3(objMatrixIT * vec4(inNormal, 0.0));
// matIndex = inMatID;
gl_Position = ubo.proj * ubo.view * vec4(worldPos, 1.0);
gl_Position = uni.viewProj * vec4(o_worldPos, 1.0);
}

View file

@ -17,40 +17,7 @@
* SPDX-License-Identifier: Apache-2.0
*/
struct Vertex
{
vec3 pos;
vec3 nrm;
vec3 color;
vec2 texCoord;
};
struct WaveFrontMaterial
{
vec3 ambient;
vec3 diffuse;
vec3 specular;
vec3 transmittance;
vec3 emission;
float shininess;
float ior; // index of refraction
float dissolve; // 1 == opaque; 0 == fully transparent
int illum; // illumination model (see http://www.fileformat.info/format/material/)
int textureId;
};
struct SceneDesc
{
mat4 transfo;
mat4 transfoIT;
int objId;
int txtOffset;
uint64_t vertexAddress;
uint64_t indexAddress;
uint64_t materialAddress;
uint64_t materialIndexAddress;
};
#include "host_device.h"
vec3 computeDiffuse(WaveFrontMaterial mat, vec3 lightDir, vec3 normal)
{