#version 460 #extension GL_EXT_ray_tracing : require #extension GL_EXT_nonuniform_qualifier : enable #extension GL_EXT_scalar_block_layout : enable #extension GL_GOOGLE_include_directive : enable #include "binding.glsl" #include "gltf.glsl" #include "raycommon.glsl" hitAttributeEXT vec2 attribs; // clang-format off layout(location = 0) rayPayloadInEXT hitPayload prd; layout(location = 1) rayPayloadEXT bool isShadowed; layout(set = 0, binding = 0 ) uniform accelerationStructureEXT topLevelAS; layout(set = 0, binding = 2) readonly buffer _InstanceInfo {PrimMeshInfo primInfo[];}; layout(set = 1, binding = B_VERTICES) readonly buffer _VertexBuf {float vertices[];}; layout(set = 1, binding = B_INDICES) readonly buffer _Indices {uint indices[];}; layout(set = 1, binding = B_NORMALS) readonly buffer _NormalBuf {float normals[];}; layout(set = 1, binding = B_TEXCOORDS) readonly buffer _TexCoordBuf {float texcoord0[];}; layout(set = 1, binding = B_MATERIALS) readonly buffer _MaterialBuffer {GltfMaterial materials[];}; layout(set = 1, binding = B_TEXTURES) uniform sampler2D texturesMap[]; // all textures // clang-format on layout(push_constant) uniform Constants { vec4 clearColor; vec3 lightPosition; float lightIntensity; int lightType; } pushC; // Return the vertex position vec3 getVertex(uint index) { vec3 vp; vp.x = vertices[3 * index + 0]; vp.y = vertices[3 * index + 1]; vp.z = vertices[3 * index + 2]; return vp; } vec3 getNormal(uint index) { vec3 vp; vp.x = normals[3 * index + 0]; vp.y = normals[3 * index + 1]; vp.z = normals[3 * index + 2]; return vp; } vec2 getTexCoord(uint index) { vec2 vp; vp.x = texcoord0[2 * index + 0]; vp.y = texcoord0[2 * index + 1]; return vp; } void main() { // Retrieve the Primitive mesh buffer information PrimMeshInfo pinfo = primInfo[gl_InstanceCustomIndexEXT]; // Getting the 'first index' for this mesh (offset of the mesh + offset of the triangle) uint indexOffset = pinfo.indexOffset + (3 * gl_PrimitiveID); uint vertexOffset = pinfo.vertexOffset; // Vertex offset as defined in glTF uint matIndex = max(0, pinfo.materialIndex); // material of primitive mesh // Getting the 3 indices of the triangle (local) ivec3 triangleIndex = ivec3(indices[nonuniformEXT(indexOffset + 0)], // indices[nonuniformEXT(indexOffset + 1)], // indices[nonuniformEXT(indexOffset + 2)]); triangleIndex += ivec3(vertexOffset); // (global) const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y); // Vertex of the triangle const vec3 pos0 = getVertex(triangleIndex.x); const vec3 pos1 = getVertex(triangleIndex.y); const vec3 pos2 = getVertex(triangleIndex.z); const vec3 position = pos0 * barycentrics.x + pos1 * barycentrics.y + pos2 * barycentrics.z; const vec3 world_position = vec3(gl_ObjectToWorldEXT * vec4(position, 1.0)); // Normal const vec3 nrm0 = getNormal(triangleIndex.x); const vec3 nrm1 = getNormal(triangleIndex.y); const vec3 nrm2 = getNormal(triangleIndex.z); vec3 normal = normalize(nrm0 * barycentrics.x + nrm1 * barycentrics.y + nrm2 * barycentrics.z); const vec3 world_normal = normalize(vec3(normal * gl_WorldToObjectEXT)); const vec3 geom_normal = normalize(cross(pos1 - pos0, pos2 - pos0)); // TexCoord const vec2 uv0 = getTexCoord(triangleIndex.x); const vec2 uv1 = getTexCoord(triangleIndex.y); const vec2 uv2 = getTexCoord(triangleIndex.z); const vec2 texcoord0 = uv0 * barycentrics.x + uv1 * barycentrics.y + uv2 * barycentrics.z; // Vector toward the light vec3 L; float lightIntensity = pushC.lightIntensity; float lightDistance = 100000.0; // Point light if(pushC.lightType == 0) { vec3 lDir = pushC.lightPosition - world_position; lightDistance = length(lDir); lightIntensity = pushC.lightIntensity / (lightDistance * lightDistance); L = normalize(lDir); } else // Directional light { L = normalize(pushC.lightPosition - vec3(0)); } // Material of the object GltfMaterial mat = materials[nonuniformEXT(matIndex)]; // Diffuse vec3 diffuse = computeDiffuse(mat, L, world_normal); if(mat.pbrBaseColorTexture > -1) { uint txtId = mat.pbrBaseColorTexture; diffuse *= texture(texturesMap[nonuniformEXT(txtId)], texcoord0).xyz; } vec3 specular = vec3(0); float attenuation = 1; // Tracing shadow ray only if the light is visible from the surface if(dot(world_normal, L) > 0) { float tMin = 0.001; float tMax = lightDistance; vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT; vec3 rayDir = L; uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT | gl_RayFlagsSkipClosestHitShaderEXT; isShadowed = true; traceRayEXT(topLevelAS, // acceleration structure flags, // rayFlags 0xFF, // cullMask 0, // sbtRecordOffset 0, // sbtRecordStride 1, // missIndex origin, // ray origin tMin, // ray min range rayDir, // ray direction tMax, // ray max range 1 // payload (location = 1) ); if(isShadowed) { attenuation = 0.3; } else { // Specular specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, world_normal); } } prd.hitValue = vec3(lightIntensity * attenuation * (diffuse + specular)); }