/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION * SPDX-License-Identifier: Apache-2.0 */ #version 460 #extension GL_ARB_separate_shader_objects : enable #extension GL_EXT_nonuniform_qualifier : enable #extension GL_GOOGLE_include_directive : enable #extension GL_EXT_scalar_block_layout : enable #extension GL_EXT_shader_explicit_arithmetic_types_int64 : require #extension GL_EXT_buffer_reference2 : require #extension GL_EXT_ray_tracing : enable #extension GL_EXT_ray_query : enable #include "wavefront.glsl" layout(push_constant) uniform shaderInformation { vec3 lightPosition; uint instanceId; float lightIntensity; int lightType; } pushC; // clang-format off // Incoming layout(location = 1) in vec2 fragTexCoord; layout(location = 2) in vec3 fragNormal; layout(location = 3) in vec3 viewDir; layout(location = 4) in vec3 worldPos; // Outgoing layout(location = 0) out vec4 outColor; layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object layout(buffer_reference, scalar) buffer Indices {uint i[]; }; // Triangle indices layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle layout(binding = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc; layout(binding = 2) uniform sampler2D[] textureSamplers; layout(binding = 3) uniform accelerationStructureEXT topLevelAS; // clang-format on void main() { // Material of the object SceneDesc objResource = sceneDesc.i[pushC.instanceId]; MatIndices matIndices = MatIndices(objResource.materialIndexAddress); Materials materials = Materials(objResource.materialAddress); int matIndex = matIndices.i[gl_PrimitiveID]; WaveFrontMaterial mat = materials.m[matIndex]; vec3 N = normalize(fragNormal); // Vector toward light vec3 L; float lightDistance; float lightIntensity = pushC.lightIntensity; if(pushC.lightType == 0) { vec3 lDir = pushC.lightPosition - worldPos; float d = length(lDir); lightIntensity = pushC.lightIntensity / (d * d); L = normalize(lDir); lightDistance = d; } else { L = normalize(pushC.lightPosition - vec3(0)); lightDistance = 10000; } // Diffuse vec3 diffuse = computeDiffuse(mat, L, N); if(mat.textureId >= 0) { int txtOffset = sceneDesc.i[pushC.instanceId].txtOffset; uint txtId = txtOffset + mat.textureId; vec3 diffuseTxt = texture(textureSamplers[nonuniformEXT(txtId)], fragTexCoord).xyz; diffuse *= diffuseTxt; } // Specular vec3 specular = computeSpecular(mat, viewDir, L, N); // Result outColor = vec4(lightIntensity * (diffuse + specular), 1); // Ray Query for shadow vec3 origin = worldPos; vec3 direction = L; // vector to light float tMin = 0.01f; float tMax = lightDistance; // Initializes a ray query object but does not start traversal rayQueryEXT rayQuery; rayQueryInitializeEXT(rayQuery, topLevelAS, gl_RayFlagsTerminateOnFirstHitEXT, 0xFF, origin, tMin, direction, tMax); // Start traversal: return false if traversal is complete while(rayQueryProceedEXT(rayQuery)) { } // Returns type of committed (true) intersection if(rayQueryGetIntersectionTypeEXT(rayQuery, true) != gl_RayQueryCommittedIntersectionNoneEXT) { // Got an intersection == Shadow outColor *= 0.1; } }