#version 460 #extension GL_EXT_ray_tracing : require #extension GL_EXT_nonuniform_qualifier : enable #extension GL_EXT_scalar_block_layout : enable #extension GL_GOOGLE_include_directive : enable #include "raycommon.glsl" #include "wavefront.glsl" hitAttributeEXT vec2 attribs; // clang-format off layout(location = 0) rayPayloadInEXT hitPayload prd; layout(location = 1) rayPayloadEXT bool isShadowed; layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS; layout(binding = 2, set = 1, scalar) buffer ScnDesc { sceneDesc i[]; } scnDesc; layout(binding = 5, set = 1, scalar) buffer Vertices { Vertex v[]; } vertices[]; layout(binding = 6, set = 1) buffer Indices { uint i[]; } indices[]; layout(binding = 1, set = 1, scalar) buffer MatColorBufferObject { WaveFrontMaterial m[]; } materials[]; layout(binding = 3, set = 1) uniform sampler2D textureSamplers[]; layout(binding = 4, set = 1) buffer MatIndexColorBuffer { int i[]; } matIndex[]; // clang-format on layout(push_constant) uniform Constants { vec4 clearColor; vec3 lightPosition; float lightIntensity; vec3 lightDirection; float lightSpotCutoff; float lightSpotOuterCutoff; int lightType; } pushC; layout(location = 0) callableDataEXT rayLight cLight; void main() { // Object of this instance uint objId = scnDesc.i[gl_InstanceID].objId; // Indices of the triangle ivec3 ind = ivec3(indices[objId].i[3 * gl_PrimitiveID + 0], // indices[objId].i[3 * gl_PrimitiveID + 1], // indices[objId].i[3 * gl_PrimitiveID + 2]); // // Vertex of the triangle Vertex v0 = vertices[objId].v[ind.x]; Vertex v1 = vertices[objId].v[ind.y]; Vertex v2 = vertices[objId].v[ind.z]; const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y); // Computing the normal at hit position vec3 normal = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z; // Transforming the normal to world space normal = normalize(vec3(scnDesc.i[gl_InstanceID].transfoIT * vec4(normal, 0.0))); // Computing the coordinates of the hit position vec3 worldPos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z; // Transforming the position to world space worldPos = vec3(scnDesc.i[gl_InstanceID].transfo * vec4(worldPos, 1.0)); cLight.inHitPosition = worldPos; //#define DONT_USE_CALLABLE #if defined(DONT_USE_CALLABLE) // Point light if(pushC.lightType == 0) { vec3 lDir = pushC.lightPosition - cLight.inHitPosition; float lightDistance = length(lDir); cLight.outIntensity = pushC.lightIntensity / (lightDistance * lightDistance); cLight.outLightDir = normalize(lDir); cLight.outLightDistance = lightDistance; } else if(pushC.lightType == 1) { vec3 lDir = pushC.lightPosition - cLight.inHitPosition; cLight.outLightDistance = length(lDir); cLight.outIntensity = pushC.lightIntensity / (cLight.outLightDistance * cLight.outLightDistance); cLight.outLightDir = normalize(lDir); float theta = dot(cLight.outLightDir, normalize(-pushC.lightDirection)); float epsilon = pushC.lightSpotCutoff - pushC.lightSpotOuterCutoff; float spotIntensity = clamp((theta - pushC.lightSpotOuterCutoff) / epsilon, 0.0, 1.0); cLight.outIntensity *= spotIntensity; } else // Directional light { cLight.outLightDir = normalize(-pushC.lightDirection); cLight.outIntensity = 1.0; cLight.outLightDistance = 10000000; } #else executeCallableEXT(pushC.lightType, 0); #endif // Material of the object int matIdx = matIndex[objId].i[gl_PrimitiveID]; WaveFrontMaterial mat = materials[objId].m[matIdx]; // Diffuse vec3 diffuse = computeDiffuse(mat, cLight.outLightDir, normal); if(mat.textureId >= 0) { uint txtId = mat.textureId + scnDesc.i[gl_InstanceID].txtOffset; vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z; diffuse *= texture(textureSamplers[txtId], texCoord).xyz; } vec3 specular = vec3(0); float attenuation = 1; // Tracing shadow ray only if the light is visible from the surface if(dot(normal, cLight.outLightDir) > 0) { float tMin = 0.001; float tMax = cLight.outLightDistance; vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT; vec3 rayDir = cLight.outLightDir; uint flags = gl_RayFlagsSkipClosestHitShaderEXT; isShadowed = true; traceRayEXT(topLevelAS, // acceleration structure flags, // rayFlags 0xFF, // cullMask 0, // sbtRecordOffset 0, // sbtRecordStride 1, // missIndex origin, // ray origin tMin, // ray min range rayDir, // ray direction tMax, // ray max range 1 // payload (location = 1) ); if(isShadowed) { attenuation = 0.3; } else { // Specular specular = computeSpecular(mat, gl_WorldRayDirectionEXT, cLight.outLightDir, normal); } } // Reflection if(mat.illum == 3) { vec3 origin = worldPos; vec3 rayDir = reflect(gl_WorldRayDirectionEXT, normal); prd.attenuation *= mat.specular; prd.done = 0; prd.rayOrigin = origin; prd.rayDir = rayDir; } prd.hitValue = vec3(cLight.outIntensity * attenuation * (diffuse + specular)); }