#version 460 #extension GL_EXT_ray_tracing : require #extension GL_EXT_nonuniform_qualifier : enable #extension GL_EXT_scalar_block_layout : enable #extension GL_GOOGLE_include_directive : enable #include "raycommon.glsl" #include "wavefront.glsl" hitAttributeEXT vec2 attribs; // clang-format off layout(location = 0) rayPayloadInEXT hitPayload prd; layout(location = 1) rayPayloadEXT bool isShadowed; layout(location = 2) rayPayloadEXT int hitLanternInstance; layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS; layout(binding = 2, set = 0) buffer LanternArray { LanternIndirectEntry lanterns[]; } lanterns; layout(binding = 1, set = 1, scalar) buffer MatColorBufferObject { WaveFrontMaterial m[]; } materials[]; layout(binding = 2, set = 1, scalar) buffer ScnDesc { sceneDesc i[]; } scnDesc; layout(binding = 3, set = 1) uniform sampler2D textureSamplers[]; layout(binding = 4, set = 1) buffer MatIndexColorBuffer { int i[]; } matIndex[]; layout(binding = 5, set = 1, scalar) buffer Vertices { Vertex v[]; } vertices[]; layout(binding = 6, set = 1) buffer Indices { uint i[]; } indices[]; // clang-format on void main() { // Object of this instance uint objId = scnDesc.i[gl_InstanceCustomIndexEXT].objId; // Indices of the triangle ivec3 ind = ivec3(indices[nonuniformEXT(objId)].i[3 * gl_PrimitiveID + 0], // indices[nonuniformEXT(objId)].i[3 * gl_PrimitiveID + 1], // indices[nonuniformEXT(objId)].i[3 * gl_PrimitiveID + 2]); // // Vertex of the triangle Vertex v0 = vertices[nonuniformEXT(objId)].v[ind.x]; Vertex v1 = vertices[nonuniformEXT(objId)].v[ind.y]; Vertex v2 = vertices[nonuniformEXT(objId)].v[ind.z]; const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y); // Computing the normal at hit position vec3 normal = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z; // Transforming the normal to world space normal = normalize(vec3(scnDesc.i[gl_InstanceCustomIndexEXT].transfoIT * vec4(normal, 0.0))); // Computing the coordinates of the hit position vec3 worldPos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z; // Transforming the position to world space worldPos = vec3(scnDesc.i[gl_InstanceCustomIndexEXT].transfo * vec4(worldPos, 1.0)); // Vector toward the light vec3 L; vec3 colorIntensity = vec3(pushC.lightIntensity); float lightDistance = 100000.0; // ray direction is towards lantern, if in lantern pass. if (pushC.lanternPassNumber >= 0) { LanternIndirectEntry lantern = lanterns.lanterns[pushC.lanternPassNumber]; vec3 lDir = vec3(lantern.x, lantern.y, lantern.z) - worldPos; lightDistance = length(lDir); vec3 color = vec3(lantern.red, lantern.green, lantern.blue); // Lantern light decreases linearly. Not physically accurate, but looks good // and avoids a hard "edge" at the radius limit. Use a constant value // if lantern debug is enabled to clearly see the covered screen rectangle. float distanceFade = pushC.lanternDebug != 0 ? 0.3 : max(0, (lantern.radius - lightDistance) / lantern.radius); colorIntensity = color * lantern.brightness * distanceFade; L = normalize(lDir); } // Non-lantern pass may have point light... else if(pushC.lightType == 0) { vec3 lDir = pushC.lightPosition - worldPos; lightDistance = length(lDir); colorIntensity = vec3(pushC.lightIntensity / (lightDistance * lightDistance)); L = normalize(lDir); } else // or directional light. { L = normalize(pushC.lightPosition - vec3(0)); } // Material of the object int matIdx = matIndex[nonuniformEXT(objId)].i[gl_PrimitiveID]; WaveFrontMaterial mat = materials[nonuniformEXT(objId)].m[matIdx]; // Diffuse vec3 diffuse = computeDiffuse(mat, L, normal); if(mat.textureId >= 0) { uint txtId = mat.textureId + scnDesc.i[gl_InstanceCustomIndexEXT].txtOffset; vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z; diffuse *= texture(textureSamplers[nonuniformEXT(txtId)], texCoord).xyz; } vec3 specular = vec3(0); float attenuation = 1; // Tracing shadow ray only if the light is visible from the surface if(dot(normal, L) > 0) { float tMin = 0.001; float tMax = lightDistance; vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT; vec3 rayDir = L; // Ordinary shadow from the simple tutorial. if (pushC.lanternPassNumber < 0) { isShadowed = true; uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT | gl_RayFlagsSkipClosestHitShaderEXT; traceRayEXT(topLevelAS, // acceleration structure flags, // rayFlags 0xFF, // cullMask 0, // sbtRecordOffset 0, // sbtRecordStride 1, // missIndex origin, // ray origin tMin, // ray min range rayDir, // ray direction tMax, // ray max range 1 // payload (location = 1) ); } // Lantern shadow ray. Cast a ray towards the lantern whose lighting is being // added this pass. Only the closest hit shader for lanterns will set // hitLanternInstance (payload 2) to non-negative value. else { // Skip ray if no light would be added anyway. if (colorIntensity == vec3(0)) { isShadowed = true; } else { uint flags = gl_RayFlagsOpaqueEXT; hitLanternInstance = -1; traceRayEXT(topLevelAS, // acceleration structure flags, // rayFlags 0xFF, // cullMask 2, // sbtRecordOffset : lantern shadow hit groups start at index 2. 0, // sbtRecordStride 2, // missIndex : lantern shadow miss shader is number 2. origin, // ray origin tMin, // ray min range rayDir, // ray direction tMax, // ray max range 2 // payload (location = 2) ); // Did we hit the lantern we expected? isShadowed = (hitLanternInstance != pushC.lanternPassNumber); } } if(isShadowed) { attenuation = 0.1; } else { // Specular specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, normal); } } prd.hitValue = colorIntensity * (attenuation * (diffuse + specular)); prd.additiveBlending = true; }