#version 460 #extension GL_EXT_ray_tracing : require #extension GL_EXT_nonuniform_qualifier : enable #extension GL_EXT_scalar_block_layout : enable #extension GL_GOOGLE_include_directive : enable #include "raycommon.glsl" #include "wavefront.glsl" hitAttributeEXT vec3 attribs; // clang-format off layout(location = 0) rayPayloadInEXT hitPayload prd; layout(location = 1) rayPayloadEXT bool isShadowed; layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS; layout(binding = 2, set = 1, scalar) buffer ScnDesc { sceneDesc i[]; } scnDesc; layout(binding = 5, set = 1, scalar) buffer Vertices { Vertex v[]; } vertices[]; layout(binding = 6, set = 1) buffer Indices { uint i[]; } indices[]; layout(binding = 1, set = 1, scalar) buffer MatColorBufferObject { WaveFrontMaterial m[]; } materials[]; layout(binding = 3, set = 1) uniform sampler2D textureSamplers[]; layout(binding = 4, set = 1) buffer MatIndexColorBuffer { int i[]; } matIndex[]; layout(binding = 7, set = 1, scalar) buffer allImplicits_ {Implicit i[];} allImplicits; // clang-format on layout(push_constant) uniform Constants { vec4 clearColor; vec3 lightPosition; float lightIntensity; vec3 lightDirection; float lightSpotCutoff; float lightSpotOuterCutoff; int lightType; } pushC; layout(location = 0) callableDataEXT rayLight cLight; void main() { vec3 worldPos = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT; Implicit impl = allImplicits.i[gl_PrimitiveID]; // Computing the normal at hit position vec3 normal; if(gl_HitKindEXT == KIND_SPHERE) { vec3 center = (impl.maximum + impl.minimum) * 0.5; normal = normalize(worldPos - center); } else if(gl_HitKindEXT == KIND_CUBE) { const float epsilon = 0.00001; if(abs(impl.maximum.x - worldPos.x) < epsilon) normal = vec3(1, 0, 0); else if(abs(impl.maximum.y - worldPos.y) < epsilon) normal = vec3(0, 1, 0); else if(abs(impl.maximum.z - worldPos.z) < epsilon) normal = vec3(0, 0, 1); else if(abs(impl.minimum.x - worldPos.x) < epsilon) normal = vec3(-1, 0, 0); else if(abs(impl.minimum.y - worldPos.y) < epsilon) normal = vec3(0, -1, 0); else if(abs(impl.minimum.z - worldPos.z) < epsilon) normal = vec3(0, 0, -1); } cLight.inHitPosition = worldPos; executeCallableEXT(pushC.lightType, 0); // Material of the object WaveFrontMaterial mat = materials[gl_InstanceCustomIndexEXT].m[impl.matId]; // Diffuse vec3 diffuse = computeDiffuse(mat, cLight.outLightDir, normal); vec3 specular = vec3(0); float attenuation = 1; // Tracing shadow ray only if the light is visible from the surface if(dot(normal, cLight.outLightDir) > 0) { float tMin = 0.001; float tMax = cLight.outLightDistance; vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT; vec3 rayDir = cLight.outLightDir; uint flags = gl_RayFlagsSkipClosestHitShaderEXT; isShadowed = true; traceRayEXT(topLevelAS, // acceleration structure flags, // rayFlags 0xFF, // cullMask 0, // sbtRecordOffset 0, // sbtRecordStride 1, // missIndex origin, // ray origin tMin, // ray min range rayDir, // ray direction tMax, // ray max range 1 // payload (location = 1) ); if(isShadowed) { attenuation = 0.3; } else { // Specular specular = computeSpecular(mat, gl_WorldRayDirectionEXT, cLight.outLightDir, normal); } } // Reflection if(mat.illum == 3) { vec3 origin = worldPos; vec3 rayDir = reflect(gl_WorldRayDirectionEXT, normal); prd.attenuation *= mat.specular; prd.done = 0; prd.rayOrigin = origin; prd.rayDir = rayDir; } prd.hitValue = vec3(cLight.outIntensity * attenuation * (diffuse + specular)); }