/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION * SPDX-License-Identifier: Apache-2.0 */ #version 460 #extension GL_EXT_ray_tracing : require #extension GL_EXT_nonuniform_qualifier : enable #extension GL_EXT_scalar_block_layout : enable #extension GL_GOOGLE_include_directive : enable #include "binding.glsl" #include "gltf.glsl" #include "raycommon.glsl" #include "sampling.glsl" hitAttributeEXT vec2 attribs; // clang-format off layout(location = 0) rayPayloadInEXT hitPayload prd; layout(location = 1) rayPayloadEXT bool isShadowed; layout(set = 0, binding = 0 ) uniform accelerationStructureEXT topLevelAS; layout(set = 0, binding = 2) readonly buffer _InstanceInfo {PrimMeshInfo primInfo[];}; layout(set = 1, binding = B_VERTICES) readonly buffer _VertexBuf {float vertices[];}; layout(set = 1, binding = B_INDICES) readonly buffer _Indices {uint indices[];}; layout(set = 1, binding = B_NORMALS) readonly buffer _NormalBuf {float normals[];}; layout(set = 1, binding = B_TEXCOORDS) readonly buffer _TexCoordBuf {float texcoord0[];}; layout(set = 1, binding = B_MATERIALS) readonly buffer _MaterialBuffer {GltfShadeMaterial materials[];}; layout(set = 1, binding = B_TEXTURES) uniform sampler2D texturesMap[]; // all textures // clang-format on layout(push_constant) uniform Constants { vec4 clearColor; vec3 lightPosition; float lightIntensity; int lightType; } pushC; // Return the vertex position vec3 getVertex(uint index) { vec3 vp; vp.x = vertices[3 * index + 0]; vp.y = vertices[3 * index + 1]; vp.z = vertices[3 * index + 2]; return vp; } vec3 getNormal(uint index) { vec3 vp; vp.x = normals[3 * index + 0]; vp.y = normals[3 * index + 1]; vp.z = normals[3 * index + 2]; return vp; } vec2 getTexCoord(uint index) { vec2 vp; vp.x = texcoord0[2 * index + 0]; vp.y = texcoord0[2 * index + 1]; return vp; } void main() { // Retrieve the Primitive mesh buffer information PrimMeshInfo pinfo = primInfo[gl_InstanceCustomIndexEXT]; // Getting the 'first index' for this mesh (offset of the mesh + offset of the triangle) uint indexOffset = pinfo.indexOffset + (3 * gl_PrimitiveID); uint vertexOffset = pinfo.vertexOffset; // Vertex offset as defined in glTF uint matIndex = max(0, pinfo.materialIndex); // material of primitive mesh // Getting the 3 indices of the triangle (local) ivec3 triangleIndex = ivec3(indices[nonuniformEXT(indexOffset + 0)], // indices[nonuniformEXT(indexOffset + 1)], // indices[nonuniformEXT(indexOffset + 2)]); triangleIndex += ivec3(vertexOffset); // (global) const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y); // Vertex of the triangle const vec3 pos0 = getVertex(triangleIndex.x); const vec3 pos1 = getVertex(triangleIndex.y); const vec3 pos2 = getVertex(triangleIndex.z); const vec3 position = pos0 * barycentrics.x + pos1 * barycentrics.y + pos2 * barycentrics.z; const vec3 world_position = vec3(gl_ObjectToWorldEXT * vec4(position, 1.0)); // Normal const vec3 nrm0 = getNormal(triangleIndex.x); const vec3 nrm1 = getNormal(triangleIndex.y); const vec3 nrm2 = getNormal(triangleIndex.z); vec3 normal = normalize(nrm0 * barycentrics.x + nrm1 * barycentrics.y + nrm2 * barycentrics.z); const vec3 world_normal = normalize(vec3(normal * gl_WorldToObjectEXT)); const vec3 geom_normal = normalize(cross(pos1 - pos0, pos2 - pos0)); // TexCoord const vec2 uv0 = getTexCoord(triangleIndex.x); const vec2 uv1 = getTexCoord(triangleIndex.y); const vec2 uv2 = getTexCoord(triangleIndex.z); const vec2 texcoord0 = uv0 * barycentrics.x + uv1 * barycentrics.y + uv2 * barycentrics.z; // https://en.wikipedia.org/wiki/Path_tracing // Material of the object GltfShadeMaterial mat = materials[nonuniformEXT(matIndex)]; vec3 emittance = mat.emissiveFactor; // Pick a random direction from here and keep going. vec3 tangent, bitangent; createCoordinateSystem(world_normal, tangent, bitangent); vec3 rayOrigin = world_position; vec3 rayDirection = samplingHemisphere(prd.seed, tangent, bitangent, world_normal); // Probability of the newRay (cosine distributed) const float p = 1 / M_PI; // Compute the BRDF for this ray (assuming Lambertian reflection) float cos_theta = dot(rayDirection, world_normal); vec3 albedo = mat.pbrBaseColorFactor.xyz; if(mat.pbrBaseColorTexture > -1) { uint txtId = mat.pbrBaseColorTexture; albedo *= texture(texturesMap[nonuniformEXT(txtId)], texcoord0).xyz; } vec3 BRDF = albedo / M_PI; prd.rayOrigin = rayOrigin; prd.rayDirection = rayDirection; prd.hitValue = emittance; prd.weight = BRDF * cos_theta / p; return; // Recursively trace reflected light sources. if(prd.depth < 10) { prd.depth++; float tMin = 0.001; float tMax = 100000000.0; uint flags = gl_RayFlagsOpaqueEXT; traceRayEXT(topLevelAS, // acceleration structure flags, // rayFlags 0xFF, // cullMask 0, // sbtRecordOffset 0, // sbtRecordStride 0, // missIndex rayOrigin, // ray origin tMin, // ray min range rayDirection, // ray direction tMax, // ray max range 0 // payload (location = 0) ); } vec3 incoming = prd.hitValue; // Apply the Rendering Equation here. prd.hitValue = emittance + (BRDF * incoming * cos_theta / p); }