/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION * SPDX-License-Identifier: Apache-2.0 */ #version 460 #extension GL_EXT_ray_tracing : require #extension GL_EXT_nonuniform_qualifier : enable #extension GL_EXT_scalar_block_layout : enable #extension GL_GOOGLE_include_directive : enable #extension GL_EXT_shader_explicit_arithmetic_types_int64 : require #extension GL_EXT_buffer_reference2 : require #include "raycommon.glsl" #include "wavefront.glsl" hitAttributeEXT vec2 attribs; // clang-format off layout(location = 0) rayPayloadInEXT hitPayload prd; layout(location = 1) rayPayloadEXT bool isShadowed; layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object layout(buffer_reference, scalar) buffer Indices {ivec3 i[]; }; // Triangle indices layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle layout(set = 0, binding = eTlas) uniform accelerationStructureEXT topLevelAS; layout(set = 1, binding = eObjDescs, scalar) buffer ObjDesc_ { ObjDesc i[]; } objDesc; layout(set = 1, binding = eTextures) uniform sampler2D textureSamplers[]; layout(push_constant) uniform _PushConstantRay { PushConstantRay pcRay; }; // clang-format on layout(location = 3) callableDataEXT rayLight cLight; void main() { // Object data ObjDesc objResource = objDesc.i[gl_InstanceCustomIndexEXT]; MatIndices matIndices = MatIndices(objResource.materialIndexAddress); Materials materials = Materials(objResource.materialAddress); Indices indices = Indices(objResource.indexAddress); Vertices vertices = Vertices(objResource.vertexAddress); // Indices of the triangle ivec3 ind = indices.i[gl_PrimitiveID]; // Vertex of the triangle Vertex v0 = vertices.v[ind.x]; Vertex v1 = vertices.v[ind.y]; Vertex v2 = vertices.v[ind.z]; const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y); // Computing the normal at hit position vec3 normal = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z; // Transforming the normal to world space normal = normalize(vec3(normal * gl_WorldToObjectEXT)); // Computing the coordinates of the hit position vec3 worldPos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z; // Transforming the position to world space worldPos = vec3(gl_ObjectToWorldEXT * vec4(worldPos, 1.0)); cLight.inHitPosition = worldPos; //#define DONT_USE_CALLABLE #if defined(DONT_USE_CALLABLE) // Point light if(pcRay.lightType == 0) { vec3 lDir = pcRay.lightPosition - cLight.inHitPosition; float lightDistance = length(lDir); cLight.outIntensity = pcRay.lightIntensity / (lightDistance * lightDistance); cLight.outLightDir = normalize(lDir); cLight.outLightDistance = lightDistance; } else if(pcRay.lightType == 1) { vec3 lDir = pcRay.lightPosition - cLight.inHitPosition; cLight.outLightDistance = length(lDir); cLight.outIntensity = pcRay.lightIntensity / (cLight.outLightDistance * cLight.outLightDistance); cLight.outLightDir = normalize(lDir); float theta = dot(cLight.outLightDir, normalize(-pcRay.lightDirection)); float epsilon = pcRay.lightSpotCutoff - pcRay.lightSpotOuterCutoff; float spotIntensity = clamp((theta - pcRay.lightSpotOuterCutoff) / epsilon, 0.0, 1.0); cLight.outIntensity *= spotIntensity; } else // Directional light { cLight.outLightDir = normalize(-pcRay.lightDirection); cLight.outIntensity = 1.0; cLight.outLightDistance = 10000000; } #else executeCallableEXT(pcRay.lightType, 3); #endif // Material of the object int matIdx = matIndices.i[gl_PrimitiveID]; WaveFrontMaterial mat = materials.m[matIdx]; // Diffuse vec3 diffuse = computeDiffuse(mat, cLight.outLightDir, normal); if(mat.textureId >= 0) { uint txtId = mat.textureId + objDesc.i[gl_InstanceCustomIndexEXT].txtOffset; vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z; diffuse *= texture(textureSamplers[nonuniformEXT(txtId)], texCoord).xyz; } vec3 specular = vec3(0); float attenuation = 1; // Tracing shadow ray only if the light is visible from the surface if(dot(normal, cLight.outLightDir) > 0) { float tMin = 0.001; float tMax = cLight.outLightDistance; vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT; vec3 rayDir = cLight.outLightDir; uint flags = gl_RayFlagsSkipClosestHitShaderEXT; isShadowed = true; traceRayEXT(topLevelAS, // acceleration structure flags, // rayFlags 0xFF, // cullMask 0, // sbtRecordOffset 0, // sbtRecordStride 1, // missIndex origin, // ray origin tMin, // ray min range rayDir, // ray direction tMax, // ray max range 1 // payload (location = 1) ); if(isShadowed) { attenuation = 0.3; } else { // Specular specular = computeSpecular(mat, gl_WorldRayDirectionEXT, cLight.outLightDir, normal); } } // Reflection if(mat.illum == 3) { vec3 origin = worldPos; vec3 rayDir = reflect(gl_WorldRayDirectionEXT, normal); prd.attenuation *= mat.specular; prd.done = 0; prd.rayOrigin = origin; prd.rayDir = rayDir; } prd.hitValue = vec3(cLight.outIntensity * attenuation * (diffuse + specular)); }