/* * Copyright (c) 2014-2021, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * SPDX-FileCopyrightText: Copyright (c) 2014-2021 NVIDIA CORPORATION * SPDX-License-Identifier: Apache-2.0 */ #pragma once #include "nvvk/appbase_vk.hpp" #include "nvvk/debug_util_vk.hpp" #include "nvvk/descriptorsets_vk.hpp" #include "nvvk/memallocator_dma_vk.hpp" #include "nvvk/resourceallocator_vk.hpp" // #VKRay #include "nvvk/raytraceKHR_vk.hpp" //-------------------------------------------------------------------------------------------------- // Simple rasterizer of OBJ objects // - Each OBJ loaded are stored in an `ObjModel` and referenced by a `ObjInstance` // - It is possible to have many `ObjInstance` referencing the same `ObjModel` // - Rendering is done in an offscreen framebuffer // - The image of the framebuffer is displayed in post-process in a full-screen quad // class HelloVulkan : public nvvk::AppBaseVk { public: void setup(const VkInstance& instance, const VkDevice& device, const VkPhysicalDevice& physicalDevice, uint32_t queueFamily) override; void createDescriptorSetLayout(); void createGraphicsPipeline(); void loadModel(const std::string& filename, nvmath::mat4f transform = nvmath::mat4f(1)); void updateDescriptorSet(); void createUniformBuffer(); void createSceneDescriptionBuffer(); void createTextureImages(const VkCommandBuffer& cmdBuf, const std::vector& textures); void updateUniformBuffer(const VkCommandBuffer& cmdBuf); void onResize(int /*w*/, int /*h*/) override; void destroyResources(); void rasterize(const VkCommandBuffer& cmdBuff); // The OBJ model struct ObjModel { uint32_t nbIndices{0}; uint32_t nbVertices{0}; nvvk::Buffer vertexBuffer; // Device buffer of all 'Vertex' nvvk::Buffer indexBuffer; // Device buffer of the indices forming triangles nvvk::Buffer matColorBuffer; // Device buffer of array of 'Wavefront material' nvvk::Buffer matIndexBuffer; // Device buffer of array of 'Wavefront material' }; // Instance of the OBJ struct ObjInstance { uint32_t objIndex{0}; // Reference to the `m_objModel` uint32_t txtOffset{0}; // Offset in `m_textures` nvmath::mat4f transform{1}; // Position of the instance nvmath::mat4f transformIT{1}; // Inverse transpose }; // Information pushed at each draw call struct ObjPushConstant { nvmath::vec3f lightPosition{10.f, 15.f, 8.f}; int instanceId{0}; // To retrieve the transformation matrix float lightIntensity{100.f}; int lightType{0}; // 0: point, 1: infinite }; ObjPushConstant m_pushConstant; // Array of objects and instances in the scene std::vector m_objModel; std::vector m_objInstance; // Graphic pipeline VkPipelineLayout m_pipelineLayout; VkPipeline m_graphicsPipeline; nvvk::DescriptorSetBindings m_descSetLayoutBind; VkDescriptorPool m_descPool; VkDescriptorSetLayout m_descSetLayout; VkDescriptorSet m_descSet; nvvk::Buffer m_cameraMat; // Device-Host of the camera matrices nvvk::Buffer m_sceneDesc; // Device buffer of the OBJ instances std::vector m_textures; // vector of all textures of the scene nvvk::ResourceAllocatorDma m_alloc; // Allocator for buffer, images, acceleration structures nvvk::DebugUtil m_debug; // Utility to name objects // #Post void createOffscreenRender(); void createPostPipeline(); void createPostDescriptor(); void updatePostDescriptorSet(); void drawPost(VkCommandBuffer cmdBuf); nvvk::DescriptorSetBindings m_postDescSetLayoutBind; VkDescriptorPool m_postDescPool{VK_NULL_HANDLE}; VkDescriptorSetLayout m_postDescSetLayout{VK_NULL_HANDLE}; VkDescriptorSet m_postDescSet{VK_NULL_HANDLE}; VkPipeline m_postPipeline{VK_NULL_HANDLE}; VkPipelineLayout m_postPipelineLayout{VK_NULL_HANDLE}; VkRenderPass m_offscreenRenderPass{VK_NULL_HANDLE}; VkFramebuffer m_offscreenFramebuffer{VK_NULL_HANDLE}; nvvk::Texture m_offscreenColor; nvvk::Texture m_offscreenDepth; VkFormat m_offscreenColorFormat{VK_FORMAT_R32G32B32A32_SFLOAT}; VkFormat m_offscreenDepthFormat{VK_FORMAT_X8_D24_UNORM_PACK32}; // #VKRay void initRayTracing(); auto objectToVkGeometryKHR(const ObjModel& model); void createBottomLevelAS(); void createTopLevelAS(); void createRtDescriptorSet(); void updateRtDescriptorSet(); void createRtPipeline(); void createRtShaderBindingTable(); void raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& clearColor); VkPhysicalDeviceRayTracingPipelinePropertiesKHR m_rtProperties{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR}; nvvk::RaytracingBuilderKHR m_rtBuilder; nvvk::DescriptorSetBindings m_rtDescSetLayoutBind; VkDescriptorPool m_rtDescPool; VkDescriptorSetLayout m_rtDescSetLayout; VkDescriptorSet m_rtDescSet; std::vector m_rtShaderGroups; VkPipelineLayout m_rtPipelineLayout; VkPipeline m_rtPipeline; nvvk::Buffer m_rtSBTBuffer; struct RtPushConstant { nvmath::vec4f clearColor; nvmath::vec3f lightPosition; float lightIntensity{100.0f}; int lightType{0}; } m_rtPushConstants; };