bluenoise-raytracer/ray_tracing_indirect_scissor/shaders/lanternIndirect.comp
Mathias Heyer 0c73e8ec1b Bulk update nvpro-samples 11/20/23
5c72ddfc0522eb6604828e74886cf39be646ba78
2023-11-20 13:54:44 -08:00

181 lines
7 KiB
Text

/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 460
#extension GL_GOOGLE_include_directive : enable
// Compute shader for filling in raytrace indirect parameters for each lantern
// based on the current camera position (passed as view and proj matrix in
// push constant).
//
// Designed to be dispatched with only one work group; it alone fills in
// the entire lantern array (of length lanternCount, in also push constant).
#define LOCAL_SIZE 128
layout(local_size_x = LOCAL_SIZE, local_size_y = 1, local_size_z = 1) in;
#include "LanternIndirectEntry.glsl"
layout(binding = 0, set = 0) buffer LanternArray
{
LanternIndirectEntry lanterns[];
}
lanterns;
layout(push_constant) uniform Constants
{
vec4 viewRowX;
vec4 viewRowY;
vec4 viewRowZ;
mat4 proj;
float nearZ;
int screenX;
int screenY;
int lanternCount;
}
pushC;
// Copy the technique of "2D Polyhedral Bounds of a Clipped,
// Perspective-Projected 3D Sphere" M. Mara M. McGuire
// http://jcgt.org/published/0002/02/05/paper.pdf
// to compute a screen-space rectangle covering the given Lantern's
// light radius-of-effect. Result is in screen (pixel) coordinates.
void getScreenCoordBox(in LanternIndirectEntry lantern, out ivec2 lower, out ivec2 upper);
// Use the xyz and radius of lanterns[i] plus the transformation matrices
// in pushC to fill in the offset and indirect parameters of lanterns[i]
// (defines the screen rectangle that this lantern's light is bounded in).
void fillIndirectEntry(int i)
{
LanternIndirectEntry lantern = lanterns.lanterns[i];
ivec2 lower, upper;
getScreenCoordBox(lantern, lower, upper);
lanterns.lanterns[i].indirectWidth = max(0, upper.x - lower.x);
lanterns.lanterns[i].indirectHeight = max(0, upper.y - lower.y);
lanterns.lanterns[i].indirectDepth = 1;
lanterns.lanterns[i].offsetX = lower.x;
lanterns.lanterns[i].offsetY = lower.y;
}
void main()
{
for(int i = int(gl_LocalInvocationID.x); i < pushC.lanternCount; i += LOCAL_SIZE)
{
fillIndirectEntry(i);
}
}
// Functions below modified from the paper.
float square(float a)
{
return a * a;
}
void getBoundsForAxis(in bool xAxis, in vec3 center, in float radius, in float nearZ, in mat4 projMatrix, out vec3 U, out vec3 L)
{
bool trivialAccept = (center.z + radius) < nearZ; // Entirely in back of nearPlane (Trivial Accept)
vec3 a = xAxis ? vec3(1, 0, 0) : vec3(0, 1, 0);
// given in coordinates (a,z), where a is in the direction of the vector a, and z is in the standard z direction
vec2 projectedCenter = vec2(dot(a, center), center.z);
vec2 bounds_az[2];
float tSquared = dot(projectedCenter, projectedCenter) - square(radius);
float t, cLength, costheta = 0, sintheta = 0;
if(tSquared > 0)
{ // Camera is outside sphere
// Distance to the tangent points of the sphere (points where a vector from the camera are tangent to the sphere) (calculated a-z space)
t = sqrt(tSquared);
cLength = length(projectedCenter);
// Theta is the angle between the vector from the camera to the center of the sphere and the vectors from the camera to the tangent points
costheta = t / cLength;
sintheta = radius / cLength;
}
float sqrtPart = 0.0f;
if(!trivialAccept)
sqrtPart = sqrt(square(radius) - square(nearZ - projectedCenter.y));
for(int i = 0; i < 2; ++i)
{
if(tSquared > 0)
{
float x = costheta * projectedCenter.x + -sintheta * projectedCenter.y;
float y = sintheta * projectedCenter.x + costheta * projectedCenter.y;
bounds_az[i] = costheta * vec2(x, y);
}
if(!trivialAccept && (tSquared <= 0 || bounds_az[i].y > nearZ))
{
bounds_az[i].x = projectedCenter.x + sqrtPart;
bounds_az[i].y = nearZ;
}
sintheta *= -1; // negate theta for B
sqrtPart *= -1; // negate sqrtPart for B
}
U = bounds_az[0].x * a;
U.z = bounds_az[0].y;
L = bounds_az[1].x * a;
L.z = bounds_az[1].y;
}
/** Center is in camera space */
void getBoundingBox(in vec3 center, in float radius, in float nearZ, in mat4 projMatrix, out vec2 ndc_low, out vec2 ndc_high)
{
vec3 maxXHomogenous, minXHomogenous, maxYHomogenous, minYHomogenous;
getBoundsForAxis(true, center, radius, nearZ, projMatrix, maxXHomogenous, minXHomogenous);
getBoundsForAxis(false, center, radius, nearZ, projMatrix, maxYHomogenous, minYHomogenous);
vec4 projRow0 = vec4(projMatrix[0][0], projMatrix[1][0], projMatrix[2][0], projMatrix[3][0]);
vec4 projRow1 = vec4(projMatrix[0][1], projMatrix[1][1], projMatrix[2][1], projMatrix[3][1]);
vec4 projRow3 = vec4(projMatrix[0][3], projMatrix[1][3], projMatrix[2][3], projMatrix[3][3]);
// We only need one coordinate for each point, so we save computation by only calculating x(or y) and w
float maxX_w = dot(vec4(maxXHomogenous, 1.0f), projRow3);
float minX_w = dot(vec4(minXHomogenous, 1.0f), projRow3);
float maxY_w = dot(vec4(maxYHomogenous, 1.0f), projRow3);
float minY_w = dot(vec4(minYHomogenous, 1.0f), projRow3);
float maxX = dot(vec4(maxXHomogenous, 1.0f), projRow0) / maxX_w;
float minX = dot(vec4(minXHomogenous, 1.0f), projRow0) / minX_w;
float maxY = dot(vec4(maxYHomogenous, 1.0f), projRow1) / maxY_w;
float minY = dot(vec4(minYHomogenous, 1.0f), projRow1) / minY_w;
// Paper minX, etc. names are misleading, not necessarily min. Fix here.
ndc_low = vec2(min(minX, maxX), min(minY, maxY));
ndc_high = vec2(max(minX, maxX), max(minY, maxY));
}
void getScreenCoordBox(in LanternIndirectEntry lantern, out ivec2 lower, out ivec2 upper)
{
vec4 lanternWorldCenter = vec4(lantern.x, lantern.y, lantern.z, 1);
vec3 center = vec3(dot(pushC.viewRowX, lanternWorldCenter), dot(pushC.viewRowY, lanternWorldCenter),
dot(pushC.viewRowZ, lanternWorldCenter));
vec2 ndc_low, ndc_high;
float paperNearZ = -abs(pushC.nearZ); // Paper expected negative nearZ, took 2 days to figure out!
getBoundingBox(center, lantern.radius, paperNearZ, pushC.proj, ndc_low, ndc_high);
// Convert NDC [-1,+1]^2 coordinates to screen coordinates, and clamp to stay in bounds.
lower.x = clamp(int((ndc_low.x * 0.5 + 0.5) * pushC.screenX), 0, pushC.screenX);
lower.y = clamp(int((ndc_low.y * 0.5 + 0.5) * pushC.screenY), 0, pushC.screenY);
upper.x = clamp(int((ndc_high.x * 0.5 + 0.5) * pushC.screenX), 0, pushC.screenX);
upper.y = clamp(int((ndc_high.y * 0.5 + 0.5) * pushC.screenY), 0, pushC.screenY);
}