156 lines
6.1 KiB
GLSL
156 lines
6.1 KiB
GLSL
/*
|
|
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#version 460
|
|
#extension GL_EXT_ray_tracing : require
|
|
#extension GL_EXT_nonuniform_qualifier : enable
|
|
#extension GL_EXT_scalar_block_layout : enable
|
|
#extension GL_GOOGLE_include_directive : enable
|
|
|
|
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
|
|
#extension GL_EXT_buffer_reference2 : require
|
|
|
|
|
|
#include "gltf.glsl"
|
|
#include "raycommon.glsl"
|
|
#include "sampling.glsl"
|
|
#include "host_device.h"
|
|
|
|
hitAttributeEXT vec2 attribs;
|
|
|
|
// clang-format off
|
|
layout(location = 0) rayPayloadInEXT hitPayload prd;
|
|
layout(location = 1) rayPayloadEXT bool isShadowed;
|
|
|
|
layout(set = 0, binding = 0 ) uniform accelerationStructureEXT topLevelAS;
|
|
layout(set = 0, binding = 2) readonly buffer _InstanceInfo {PrimMeshInfo primInfo[];};
|
|
|
|
|
|
layout(buffer_reference, scalar) readonly buffer Vertices { vec3 v[]; };
|
|
layout(buffer_reference, scalar) readonly buffer Indices { ivec3 i[]; };
|
|
layout(buffer_reference, scalar) readonly buffer Normals { vec3 n[]; };
|
|
layout(buffer_reference, scalar) readonly buffer TexCoords { vec2 t[]; };
|
|
layout(buffer_reference, scalar) readonly buffer Materials { GltfShadeMaterial m[]; };
|
|
|
|
layout(set = 1, binding = eSceneDesc ) readonly buffer SceneDesc_ { SceneDesc sceneDesc; };
|
|
layout(set = 1, binding = eTextures) uniform sampler2D texturesMap[]; // all textures
|
|
|
|
layout(push_constant) uniform _PushConstantRay { PushConstantRay pcRay; };
|
|
// clang-format on
|
|
|
|
|
|
void main()
|
|
{
|
|
// Retrieve the Primitive mesh buffer information
|
|
PrimMeshInfo pinfo = primInfo[gl_InstanceCustomIndexEXT];
|
|
|
|
// Getting the 'first index' for this mesh (offset of the mesh + offset of the triangle)
|
|
uint indexOffset = (pinfo.indexOffset / 3) + gl_PrimitiveID;
|
|
uint vertexOffset = pinfo.vertexOffset; // Vertex offset as defined in glTF
|
|
uint matIndex = max(0, pinfo.materialIndex); // material of primitive mesh
|
|
|
|
Materials gltfMat = Materials(sceneDesc.materialAddress);
|
|
Vertices vertices = Vertices(sceneDesc.vertexAddress);
|
|
Indices indices = Indices(sceneDesc.indexAddress);
|
|
Normals normals = Normals(sceneDesc.normalAddress);
|
|
TexCoords texCoords = TexCoords(sceneDesc.uvAddress);
|
|
Materials materials = Materials(sceneDesc.materialAddress);
|
|
|
|
// Getting the 3 indices of the triangle (local)
|
|
ivec3 triangleIndex = indices.i[indexOffset];
|
|
triangleIndex += ivec3(vertexOffset); // (global)
|
|
|
|
const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y);
|
|
|
|
// Vertex of the triangle
|
|
const vec3 pos0 = vertices.v[triangleIndex.x];
|
|
const vec3 pos1 = vertices.v[triangleIndex.y];
|
|
const vec3 pos2 = vertices.v[triangleIndex.z];
|
|
const vec3 position = pos0 * barycentrics.x + pos1 * barycentrics.y + pos2 * barycentrics.z;
|
|
const vec3 world_position = vec3(gl_ObjectToWorldEXT * vec4(position, 1.0));
|
|
|
|
// Normal
|
|
const vec3 nrm0 = normals.n[triangleIndex.x];
|
|
const vec3 nrm1 = normals.n[triangleIndex.y];
|
|
const vec3 nrm2 = normals.n[triangleIndex.z];
|
|
vec3 normal = normalize(nrm0 * barycentrics.x + nrm1 * barycentrics.y + nrm2 * barycentrics.z);
|
|
const vec3 world_normal = normalize(vec3(normal * gl_WorldToObjectEXT));
|
|
const vec3 geom_normal = normalize(cross(pos1 - pos0, pos2 - pos0));
|
|
|
|
// TexCoord
|
|
const vec2 uv0 = texCoords.t[triangleIndex.x];
|
|
const vec2 uv1 = texCoords.t[triangleIndex.y];
|
|
const vec2 uv2 = texCoords.t[triangleIndex.z];
|
|
const vec2 texcoord0 = uv0 * barycentrics.x + uv1 * barycentrics.y + uv2 * barycentrics.z;
|
|
|
|
// https://en.wikipedia.org/wiki/Path_tracing
|
|
// Material of the object
|
|
GltfShadeMaterial mat = materials.m[matIndex];
|
|
vec3 emittance = mat.emissiveFactor;
|
|
|
|
// Pick a random direction from here and keep going.
|
|
vec3 tangent, bitangent;
|
|
createCoordinateSystem(world_normal, tangent, bitangent);
|
|
vec3 rayOrigin = world_position;
|
|
vec3 rayDirection = samplingHemisphere(prd.seed, tangent, bitangent, world_normal);
|
|
|
|
// Probability of the newRay (cosine distributed)
|
|
const float p = 1 / M_PI;
|
|
|
|
// Compute the BRDF for this ray (assuming Lambertian reflection)
|
|
float cos_theta = dot(rayDirection, world_normal);
|
|
vec3 albedo = mat.pbrBaseColorFactor.xyz;
|
|
if(mat.pbrBaseColorTexture > -1)
|
|
{
|
|
uint txtId = mat.pbrBaseColorTexture;
|
|
albedo *= texture(texturesMap[nonuniformEXT(txtId)], texcoord0).xyz;
|
|
}
|
|
vec3 BRDF = albedo / M_PI;
|
|
|
|
prd.rayOrigin = rayOrigin;
|
|
prd.rayDirection = rayDirection;
|
|
prd.hitValue = emittance;
|
|
prd.weight = BRDF * cos_theta / p;
|
|
return;
|
|
|
|
// Recursively trace reflected light sources.
|
|
if(prd.depth < 10)
|
|
{
|
|
prd.depth++;
|
|
float tMin = 0.001;
|
|
float tMax = 100000000.0;
|
|
uint flags = gl_RayFlagsOpaqueEXT;
|
|
traceRayEXT(topLevelAS, // acceleration structure
|
|
flags, // rayFlags
|
|
0xFF, // cullMask
|
|
0, // sbtRecordOffset
|
|
0, // sbtRecordStride
|
|
0, // missIndex
|
|
rayOrigin, // ray origin
|
|
tMin, // ray min range
|
|
rayDirection, // ray direction
|
|
tMax, // ray max range
|
|
0 // payload (location = 0)
|
|
);
|
|
}
|
|
vec3 incoming = prd.hitValue;
|
|
|
|
// Apply the Rendering Equation here.
|
|
prd.hitValue = emittance + (BRDF * incoming * cos_theta / p);
|
|
}
|