bluenoise-raytracer/ray_tracing_gltf/shaders/sampling.glsl

64 lines
1.8 KiB
GLSL

// Generate a random unsigned int from two unsigned int values, using 16 pairs
// of rounds of the Tiny Encryption Algorithm. See Zafar, Olano, and Curtis,
// "GPU Random Numbers via the Tiny Encryption Algorithm"
uint tea(uint val0, uint val1)
{
uint v0 = val0;
uint v1 = val1;
uint s0 = 0;
for(uint n = 0; n < 16; n++)
{
s0 += 0x9e3779b9;
v0 += ((v1 << 4) + 0xa341316c) ^ (v1 + s0) ^ ((v1 >> 5) + 0xc8013ea4);
v1 += ((v0 << 4) + 0xad90777d) ^ (v0 + s0) ^ ((v0 >> 5) + 0x7e95761e);
}
return v0;
}
// Generate a random unsigned int in [0, 2^24) given the previous RNG state
// using the Numerical Recipes linear congruential generator
uint lcg(inout uint prev)
{
uint LCG_A = 1664525u;
uint LCG_C = 1013904223u;
prev = (LCG_A * prev + LCG_C);
return prev & 0x00FFFFFF;
}
// Generate a random float in [0, 1) given the previous RNG state
float rnd(inout uint prev)
{
return (float(lcg(prev)) / float(0x01000000));
}
//-------------------------------------------------------------------------------------------------
// Sampling
//-------------------------------------------------------------------------------------------------
// Randomly sampling around +Z
vec3 samplingHemisphere(inout uint seed, in vec3 x, in vec3 y, in vec3 z)
{
#define M_PI 3.141592
float r1 = rnd(seed);
float r2 = rnd(seed);
float sq = sqrt(1.0 - r2);
vec3 direction = vec3(cos(2 * M_PI * r1) * sq, sin(2 * M_PI * r1) * sq, sqrt(r2));
direction = direction.x * x + direction.y * y + direction.z * z;
return direction;
}
// Return the tangent and binormal from the incoming normal
void createCoordinateSystem(in vec3 N, out vec3 Nt, out vec3 Nb)
{
if(abs(N.x) > abs(N.y))
Nt = vec3(N.z, 0, -N.x) / sqrt(N.x * N.x + N.z * N.z);
else
Nt = vec3(0, -N.z, N.y) / sqrt(N.y * N.y + N.z * N.z);
Nb = cross(N, Nt);
}