bluenoise-raytracer/ray_tracing_gltf/shaders/frag_shader.frag
2020-12-14 17:11:22 +01:00

74 lines
1.8 KiB
GLSL

#version 450
#extension GL_ARB_separate_shader_objects : enable
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_scalar_block_layout : enable
#include "binding.glsl"
#include "gltf.glsl"
layout(push_constant) uniform shaderInformation
{
vec3 lightPosition;
uint instanceId;
float lightIntensity;
int lightType;
int matetrialId;
}
pushC;
// clang-format off
// Incoming
//layout(location = 0) flat in int matIndex;
layout(location = 1) in vec2 fragTexCoord;
layout(location = 2) in vec3 fragNormal;
layout(location = 3) in vec3 viewDir;
layout(location = 4) in vec3 worldPos;
// Outgoing
layout(location = 0) out vec4 outColor;
// Buffers
layout(set = 0, binding = B_MATERIALS) buffer _GltfMaterial { GltfShadeMaterial materials[]; };
layout(set = 0, binding = B_TEXTURES) uniform sampler2D[] textureSamplers;
// clang-format on
void main()
{
// Material of the object
GltfShadeMaterial mat = materials[nonuniformEXT(pushC.matetrialId)];
vec3 N = normalize(fragNormal);
// Vector toward light
vec3 L;
float lightIntensity = pushC.lightIntensity;
if(pushC.lightType == 0)
{
vec3 lDir = pushC.lightPosition - worldPos;
float d = length(lDir);
lightIntensity = pushC.lightIntensity / (d * d);
L = normalize(lDir);
}
else
{
L = normalize(pushC.lightPosition - vec3(0));
}
// Diffuse
vec3 diffuse = computeDiffuse(mat, L, N);
if(mat.pbrBaseColorTexture > -1)
{
uint txtId = mat.pbrBaseColorTexture;
vec3 diffuseTxt = texture(textureSamplers[nonuniformEXT(txtId)], fragTexCoord).xyz;
diffuse *= diffuseTxt;
}
// Specular
vec3 specular = computeSpecular(mat, viewDir, L, N);
// Result
outColor = vec4(lightIntensity * (diffuse + specular), 1);
}