626 lines
24 KiB
C++
626 lines
24 KiB
C++
/* Copyright (c) 2014-2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sstream>
|
|
#include <vulkan/vulkan.hpp>
|
|
|
|
extern std::vector<std::string> defaultSearchPaths;
|
|
|
|
#define VMA_IMPLEMENTATION
|
|
|
|
#define STB_IMAGE_IMPLEMENTATION
|
|
#include "fileformats/stb_image.h"
|
|
#include "obj_loader.h"
|
|
|
|
#include "hello_vulkan.h"
|
|
#include "nvh//cameramanipulator.hpp"
|
|
#include "nvvk/descriptorsets_vk.hpp"
|
|
#include "nvvk/pipeline_vk.hpp"
|
|
|
|
#include "nvh/fileoperations.hpp"
|
|
#include "nvvk/commands_vk.hpp"
|
|
#include "nvvk/renderpasses_vk.hpp"
|
|
|
|
|
|
// Holding the camera matrices
|
|
struct CameraMatrices
|
|
{
|
|
nvmath::mat4f view;
|
|
nvmath::mat4f proj;
|
|
nvmath::mat4f viewInverse;
|
|
// #VKRay
|
|
nvmath::mat4f projInverse;
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Keep the handle on the device
|
|
// Initialize the tool to do all our allocations: buffers, images
|
|
//
|
|
void HelloVulkan::setup(const vk::Instance& instance,
|
|
const vk::Device& device,
|
|
const vk::PhysicalDevice& physicalDevice,
|
|
uint32_t queueFamily)
|
|
{
|
|
AppBase::setup(instance, device, physicalDevice, queueFamily);
|
|
#if defined(NVVK_ALLOC_DEDICATED)
|
|
m_alloc.init(device, physicalDevice);
|
|
#elif defined(NVVK_ALLOC_DMA)
|
|
m_memAllocator.init(device, physicalDevice);
|
|
m_memAllocator.setAllocateFlags(VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT, true);
|
|
m_alloc.init(device, physicalDevice, &m_memAllocator);
|
|
#elif defined(NVVK_ALLOC_VMA)
|
|
VmaAllocatorCreateInfo allocatorInfo = {};
|
|
allocatorInfo.physicalDevice = physicalDevice;
|
|
allocatorInfo.instance = instance;
|
|
allocatorInfo.device = device;
|
|
allocatorInfo.flags = VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT;
|
|
vmaCreateAllocator(&allocatorInfo, &m_memAllocator);
|
|
m_alloc.init(device, physicalDevice, m_memAllocator);
|
|
#endif
|
|
m_debug.setup(m_device);
|
|
|
|
|
|
m_offscreen.setup(device, physicalDevice, &m_alloc, queueFamily);
|
|
m_raytrace.setup(device, physicalDevice, &m_alloc, queueFamily);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Called at each frame to update the camera matrix
|
|
//
|
|
void HelloVulkan::updateUniformBuffer(const vk::CommandBuffer& cmdBuf)
|
|
{
|
|
// Prepare new UBO contents on host.
|
|
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
|
|
CameraMatrices hostUBO = {};
|
|
hostUBO.view = CameraManip.getMatrix();
|
|
hostUBO.proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
|
|
// hostUBO.proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
|
|
hostUBO.viewInverse = nvmath::invert(hostUBO.view);
|
|
// #VKRay
|
|
hostUBO.projInverse = nvmath::invert(hostUBO.proj);
|
|
|
|
// UBO on the device, and what stages access it.
|
|
vk::Buffer deviceUBO = m_cameraMat.buffer;
|
|
auto uboUsageStages =
|
|
vk::PipelineStageFlagBits::eVertexShader | vk::PipelineStageFlagBits::eRayTracingShaderKHR;
|
|
|
|
// Ensure that the modified UBO is not visible to previous frames.
|
|
vk::BufferMemoryBarrier beforeBarrier;
|
|
beforeBarrier.setSrcAccessMask(vk::AccessFlagBits::eShaderRead);
|
|
beforeBarrier.setDstAccessMask(vk::AccessFlagBits::eTransferWrite);
|
|
beforeBarrier.setBuffer(deviceUBO);
|
|
beforeBarrier.setOffset(0);
|
|
beforeBarrier.setSize(sizeof hostUBO);
|
|
cmdBuf.pipelineBarrier(uboUsageStages, vk::PipelineStageFlagBits::eTransfer,
|
|
vk::DependencyFlagBits::eDeviceGroup, {}, {beforeBarrier}, {});
|
|
|
|
// Schedule the host-to-device upload. (hostUBO is copied into the cmd
|
|
// buffer so it is okay to deallocate when the function returns).
|
|
cmdBuf.updateBuffer<CameraMatrices>(m_cameraMat.buffer, 0, hostUBO);
|
|
|
|
// Making sure the updated UBO will be visible.
|
|
vk::BufferMemoryBarrier afterBarrier;
|
|
afterBarrier.setSrcAccessMask(vk::AccessFlagBits::eTransferWrite);
|
|
afterBarrier.setDstAccessMask(vk::AccessFlagBits::eShaderRead);
|
|
afterBarrier.setBuffer(deviceUBO);
|
|
afterBarrier.setOffset(0);
|
|
afterBarrier.setSize(sizeof hostUBO);
|
|
cmdBuf.pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, uboUsageStages,
|
|
vk::DependencyFlagBits::eDeviceGroup, {}, {afterBarrier}, {});
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Describing the layout pushed when rendering
|
|
//
|
|
void HelloVulkan::createDescriptorSetLayout()
|
|
{
|
|
using vkDS = vk::DescriptorSetLayoutBinding;
|
|
using vkDT = vk::DescriptorType;
|
|
using vkSS = vk::ShaderStageFlagBits;
|
|
uint32_t nbTxt = static_cast<uint32_t>(m_textures.size());
|
|
uint32_t nbObj = static_cast<uint32_t>(m_objModel.size());
|
|
|
|
// Camera matrices (binding = 0)
|
|
m_descSetLayoutBind.addBinding(
|
|
vkDS(0, vkDT::eUniformBuffer, 1, vkSS::eVertex | vkSS::eRaygenKHR));
|
|
// Materials (binding = 1)
|
|
m_descSetLayoutBind.addBinding(
|
|
vkDS(1, vkDT::eStorageBuffer, nbObj + 1, // Adding Implicit mat too
|
|
vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
|
// Scene description (binding = 2)
|
|
m_descSetLayoutBind.addBinding( //
|
|
vkDS(2, vkDT::eStorageBuffer, 1,
|
|
vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
|
// Textures (binding = 3)
|
|
m_descSetLayoutBind.addBinding(
|
|
vkDS(3, vkDT::eCombinedImageSampler, nbTxt, vkSS::eFragment | vkSS::eClosestHitKHR));
|
|
// Materials (binding = 4)
|
|
m_descSetLayoutBind.addBinding(vkDS(4, vkDT::eStorageBuffer, nbObj,
|
|
vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
|
// Storing vertices (binding = 5)
|
|
m_descSetLayoutBind.addBinding( //
|
|
vkDS(5, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
|
// Storing indices (binding = 6)
|
|
m_descSetLayoutBind.addBinding( //
|
|
vkDS(6, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
|
// Storing implicit obj (binding = 7)
|
|
m_descSetLayoutBind.addBinding( //
|
|
vkDS(7, vkDT::eStorageBuffer, 1,
|
|
vkSS::eClosestHitKHR | vkSS::eIntersectionKHR | vkSS::eAnyHitKHR));
|
|
|
|
|
|
m_descSetLayout = m_descSetLayoutBind.createLayout(m_device);
|
|
m_descPool = m_descSetLayoutBind.createPool(m_device, 1);
|
|
m_descSet = nvvk::allocateDescriptorSet(m_device, m_descPool, m_descSetLayout);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Setting up the buffers in the descriptor set
|
|
//
|
|
void HelloVulkan::updateDescriptorSet()
|
|
{
|
|
std::vector<vk::WriteDescriptorSet> writes;
|
|
|
|
// Camera matrices and scene description
|
|
vk::DescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
|
|
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 0, &dbiUnif));
|
|
vk::DescriptorBufferInfo dbiSceneDesc{m_sceneDesc.buffer, 0, VK_WHOLE_SIZE};
|
|
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 2, &dbiSceneDesc));
|
|
|
|
// All material buffers, 1 buffer per OBJ
|
|
std::vector<vk::DescriptorBufferInfo> dbiMat;
|
|
std::vector<vk::DescriptorBufferInfo> dbiMatIdx;
|
|
std::vector<vk::DescriptorBufferInfo> dbiVert;
|
|
std::vector<vk::DescriptorBufferInfo> dbiIdx;
|
|
for(auto& model : m_objModel)
|
|
{
|
|
dbiMat.emplace_back(model.matColorBuffer.buffer, 0, VK_WHOLE_SIZE);
|
|
dbiMatIdx.emplace_back(model.matIndexBuffer.buffer, 0, VK_WHOLE_SIZE);
|
|
dbiVert.emplace_back(model.vertexBuffer.buffer, 0, VK_WHOLE_SIZE);
|
|
dbiIdx.emplace_back(model.indexBuffer.buffer, 0, VK_WHOLE_SIZE);
|
|
}
|
|
dbiMat.emplace_back(m_implObjects.implMatBuf.buffer, 0, VK_WHOLE_SIZE); // Adding implicit mat
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 1, dbiMat.data()));
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 4, dbiMatIdx.data()));
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 5, dbiVert.data()));
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 6, dbiIdx.data()));
|
|
|
|
// All texture samplers
|
|
std::vector<vk::DescriptorImageInfo> diit;
|
|
for(auto& texture : m_textures)
|
|
{
|
|
diit.emplace_back(texture.descriptor);
|
|
}
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 3, diit.data()));
|
|
|
|
vk::DescriptorBufferInfo dbiImplDesc{m_implObjects.implBuf.buffer, 0, VK_WHOLE_SIZE};
|
|
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 7, &dbiImplDesc));
|
|
|
|
// Writing the information
|
|
m_device.updateDescriptorSets(static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Creating the pipeline layout
|
|
//
|
|
void HelloVulkan::createGraphicsPipeline()
|
|
{
|
|
using vkSS = vk::ShaderStageFlagBits;
|
|
|
|
vk::PushConstantRange pushConstantRanges = {vkSS::eVertex | vkSS::eFragment, 0,
|
|
sizeof(ObjPushConstants)};
|
|
|
|
// Creating the Pipeline Layout
|
|
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
|
|
vk::DescriptorSetLayout descSetLayout(m_descSetLayout);
|
|
pipelineLayoutCreateInfo.setSetLayoutCount(1);
|
|
pipelineLayoutCreateInfo.setPSetLayouts(&descSetLayout);
|
|
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
|
|
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstantRanges);
|
|
m_pipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
|
|
|
|
// Creating the Pipeline
|
|
std::vector<std::string> paths = defaultSearchPaths;
|
|
nvvk::GraphicsPipelineGeneratorCombined gpb(m_device, m_pipelineLayout, m_offscreen.renderPass());
|
|
gpb.depthStencilState.depthTestEnable = true;
|
|
gpb.addShader(nvh::loadFile("spv/vert_shader.vert.spv", true, paths, true), vkSS::eVertex);
|
|
gpb.addShader(nvh::loadFile("spv/frag_shader.frag.spv", true, paths, true), vkSS::eFragment);
|
|
gpb.addBindingDescription({0, sizeof(VertexObj)});
|
|
gpb.addAttributeDescriptions(std::vector<vk::VertexInputAttributeDescription>{
|
|
{0, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, pos)},
|
|
{1, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, nrm)},
|
|
{2, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, color)},
|
|
{3, 0, vk::Format::eR32G32Sfloat, offsetof(VertexObj, texCoord)}});
|
|
|
|
m_graphicsPipeline = gpb.createPipeline();
|
|
m_debug.setObjectName(m_graphicsPipeline, "Graphics");
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Loading the OBJ file and setting up all buffers
|
|
//
|
|
void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform)
|
|
{
|
|
using vkBU = vk::BufferUsageFlagBits;
|
|
|
|
LOGI("Loading File: %s \n", filename.c_str());
|
|
ObjLoader loader;
|
|
loader.loadModel(filename);
|
|
|
|
// Converting from Srgb to linear
|
|
for(auto& m : loader.m_materials)
|
|
{
|
|
m.ambient = nvmath::pow(m.ambient, 2.2f);
|
|
m.diffuse = nvmath::pow(m.diffuse, 2.2f);
|
|
m.specular = nvmath::pow(m.specular, 2.2f);
|
|
}
|
|
|
|
ObjInstance instance;
|
|
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
|
|
instance.transform = transform;
|
|
instance.transformIT = nvmath::transpose(nvmath::invert(transform));
|
|
instance.txtOffset = static_cast<uint32_t>(m_textures.size());
|
|
|
|
ObjModel model;
|
|
model.nbIndices = static_cast<uint32_t>(loader.m_indices.size());
|
|
model.nbVertices = static_cast<uint32_t>(loader.m_vertices.size());
|
|
|
|
// Create the buffers on Device and copy vertices, indices and materials
|
|
nvvk::CommandPool cmdBufGet(m_device, m_graphicsQueueIndex);
|
|
vk::CommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
|
|
model.vertexBuffer =
|
|
m_alloc.createBuffer(cmdBuf, loader.m_vertices,
|
|
vkBU::eVertexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress
|
|
| vkBU::eAccelerationStructureBuildInputReadOnlyKHR);
|
|
model.indexBuffer =
|
|
m_alloc.createBuffer(cmdBuf, loader.m_indices,
|
|
vkBU::eIndexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress
|
|
| vkBU::eAccelerationStructureBuildInputReadOnlyKHR);
|
|
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, vkBU::eStorageBuffer);
|
|
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, vkBU::eStorageBuffer);
|
|
// Creates all textures found
|
|
createTextureImages(cmdBuf, loader.m_textures);
|
|
cmdBufGet.submitAndWait(cmdBuf);
|
|
m_alloc.finalizeAndReleaseStaging();
|
|
|
|
std::string objNb = std::to_string(instance.objIndex);
|
|
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb).c_str()));
|
|
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb).c_str()));
|
|
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb).c_str()));
|
|
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb).c_str()));
|
|
|
|
m_objModel.emplace_back(model);
|
|
m_objInstance.emplace_back(instance);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Creating the uniform buffer holding the camera matrices
|
|
// - Buffer is host visible
|
|
//
|
|
void HelloVulkan::createUniformBuffer()
|
|
{
|
|
using vkBU = vk::BufferUsageFlagBits;
|
|
using vkMP = vk::MemoryPropertyFlagBits;
|
|
|
|
m_cameraMat = m_alloc.createBuffer(sizeof(CameraMatrices),
|
|
vkBU::eUniformBuffer | vkBU::eTransferDst, vkMP::eDeviceLocal);
|
|
m_debug.setObjectName(m_cameraMat.buffer, "cameraMat");
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Create a storage buffer containing the description of the scene elements
|
|
// - Which geometry is used by which instance
|
|
// - Transformation
|
|
// - Offset for texture
|
|
//
|
|
void HelloVulkan::createSceneDescriptionBuffer()
|
|
{
|
|
using vkBU = vk::BufferUsageFlagBits;
|
|
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
|
|
|
|
auto cmdBuf = cmdGen.createCommandBuffer();
|
|
m_sceneDesc = m_alloc.createBuffer(cmdBuf, m_objInstance, vkBU::eStorageBuffer);
|
|
cmdGen.submitAndWait(cmdBuf);
|
|
m_alloc.finalizeAndReleaseStaging();
|
|
m_debug.setObjectName(m_sceneDesc.buffer, "sceneDesc");
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Creating all textures and samplers
|
|
//
|
|
void HelloVulkan::createTextureImages(const vk::CommandBuffer& cmdBuf,
|
|
const std::vector<std::string>& textures)
|
|
{
|
|
using vkIU = vk::ImageUsageFlagBits;
|
|
|
|
vk::SamplerCreateInfo samplerCreateInfo{
|
|
{}, vk::Filter::eLinear, vk::Filter::eLinear, vk::SamplerMipmapMode::eLinear};
|
|
samplerCreateInfo.setMaxLod(FLT_MAX);
|
|
vk::Format format = vk::Format::eR8G8B8A8Srgb;
|
|
|
|
// If no textures are present, create a dummy one to accommodate the pipeline layout
|
|
if(textures.empty() && m_textures.empty())
|
|
{
|
|
nvvk::Texture texture;
|
|
|
|
std::array<uint8_t, 4> color{255u, 255u, 255u, 255u};
|
|
vk::DeviceSize bufferSize = sizeof(color);
|
|
auto imgSize = vk::Extent2D(1, 1);
|
|
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format);
|
|
|
|
// Creating the VKImage
|
|
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, color.data(), imageCreateInfo);
|
|
vk::ImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
|
|
texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
|
|
|
|
// The image format must be in VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
|
|
nvvk::cmdBarrierImageLayout(cmdBuf, texture.image, vk::ImageLayout::eUndefined,
|
|
vk::ImageLayout::eShaderReadOnlyOptimal);
|
|
m_textures.push_back(texture);
|
|
}
|
|
else
|
|
{
|
|
// Uploading all images
|
|
for(const auto& texture : textures)
|
|
{
|
|
std::stringstream o;
|
|
int texWidth, texHeight, texChannels;
|
|
o << "media/textures/" << texture;
|
|
std::string txtFile = nvh::findFile(o.str(), defaultSearchPaths, true);
|
|
|
|
stbi_uc* stbi_pixels =
|
|
stbi_load(txtFile.c_str(), &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
|
|
|
|
std::array<stbi_uc, 4> color{255u, 0u, 255u, 255u};
|
|
|
|
stbi_uc* pixels = stbi_pixels;
|
|
// Handle failure
|
|
if(!stbi_pixels)
|
|
{
|
|
texWidth = texHeight = 1;
|
|
texChannels = 4;
|
|
pixels = reinterpret_cast<stbi_uc*>(color.data());
|
|
}
|
|
|
|
vk::DeviceSize bufferSize = static_cast<uint64_t>(texWidth) * texHeight * sizeof(uint8_t) * 4;
|
|
auto imgSize = vk::Extent2D(texWidth, texHeight);
|
|
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format, vkIU::eSampled, true);
|
|
|
|
{
|
|
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, pixels, imageCreateInfo);
|
|
nvvk::cmdGenerateMipmaps(cmdBuf, image.image, format, imgSize, imageCreateInfo.mipLevels);
|
|
vk::ImageViewCreateInfo ivInfo =
|
|
nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
|
|
nvvk::Texture texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
|
|
|
|
m_textures.push_back(texture);
|
|
}
|
|
|
|
stbi_image_free(stbi_pixels);
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Destroying all allocations
|
|
//
|
|
void HelloVulkan::destroyResources()
|
|
{
|
|
m_device.destroy(m_graphicsPipeline);
|
|
m_device.destroy(m_pipelineLayout);
|
|
m_device.destroy(m_descPool);
|
|
m_device.destroy(m_descSetLayout);
|
|
m_alloc.destroy(m_cameraMat);
|
|
m_alloc.destroy(m_sceneDesc);
|
|
m_alloc.destroy(m_implObjects.implBuf);
|
|
m_alloc.destroy(m_implObjects.implMatBuf);
|
|
|
|
for(auto& m : m_objModel)
|
|
{
|
|
m_alloc.destroy(m.vertexBuffer);
|
|
m_alloc.destroy(m.indexBuffer);
|
|
m_alloc.destroy(m.matColorBuffer);
|
|
m_alloc.destroy(m.matIndexBuffer);
|
|
}
|
|
|
|
for(auto& t : m_textures)
|
|
{
|
|
m_alloc.destroy(t);
|
|
}
|
|
|
|
//#Post
|
|
m_offscreen.destroy();
|
|
|
|
// #VKRay
|
|
m_raytrace.destroy();
|
|
|
|
m_alloc.deinit();
|
|
#ifdef NVVK_ALLOC_DMA
|
|
m_memAllocator.deinit();
|
|
#elif defined(NVVK_ALLOC_VMA)
|
|
vmaDestroyAllocator(m_memAllocator);
|
|
#endif // NVVK_ALLOC_DMA
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Drawing the scene in raster mode
|
|
//
|
|
void HelloVulkan::rasterize(const vk::CommandBuffer& cmdBuf)
|
|
{
|
|
using vkPBP = vk::PipelineBindPoint;
|
|
using vkSS = vk::ShaderStageFlagBits;
|
|
vk::DeviceSize offset{0};
|
|
|
|
m_debug.beginLabel(cmdBuf, "Rasterize");
|
|
|
|
// Dynamic Viewport
|
|
cmdBuf.setViewport(0, {vk::Viewport(0, 0, (float)m_size.width, (float)m_size.height, 0, 1)});
|
|
cmdBuf.setScissor(0, {{{0, 0}, {m_size.width, m_size.height}}});
|
|
|
|
// Drawing all triangles
|
|
cmdBuf.bindPipeline(vkPBP::eGraphics, m_graphicsPipeline);
|
|
cmdBuf.bindDescriptorSets(vkPBP::eGraphics, m_pipelineLayout, 0, {m_descSet}, {});
|
|
for(int i = 0; i < m_objInstance.size(); ++i)
|
|
{
|
|
auto& inst = m_objInstance[i];
|
|
auto& model = m_objModel[inst.objIndex];
|
|
m_pushConstants.instanceId = i; // Telling which instance is drawn
|
|
cmdBuf.pushConstants<ObjPushConstants>(m_pipelineLayout, vkSS::eVertex | vkSS::eFragment, 0,
|
|
m_pushConstants);
|
|
|
|
cmdBuf.bindVertexBuffers(0, {model.vertexBuffer.buffer}, {offset});
|
|
cmdBuf.bindIndexBuffer(model.indexBuffer.buffer, 0, vk::IndexType::eUint32);
|
|
cmdBuf.drawIndexed(model.nbIndices, 1, 0, 0, 0);
|
|
}
|
|
m_debug.endLabel(cmdBuf);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Handling resize of the window
|
|
//
|
|
void HelloVulkan::onResize(int /*w*/, int /*h*/)
|
|
{
|
|
m_offscreen.createFramebuffer(m_size);
|
|
m_offscreen.updateDescriptorSet();
|
|
m_raytrace.updateRtDescriptorSet(m_offscreen.colorTexture().descriptor.imageView);
|
|
resetFrame();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Initialize offscreen rendering
|
|
//
|
|
void HelloVulkan::initOffscreen()
|
|
{
|
|
m_offscreen.createFramebuffer(m_size);
|
|
m_offscreen.createDescriptor();
|
|
m_offscreen.createPipeline(m_renderPass);
|
|
m_offscreen.updateDescriptorSet();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Initialize Vulkan ray tracing
|
|
//
|
|
void HelloVulkan::initRayTracing()
|
|
{
|
|
m_raytrace.createBottomLevelAS(m_objModel, m_implObjects);
|
|
m_raytrace.createTopLevelAS(m_objInstance, m_implObjects);
|
|
m_raytrace.createRtDescriptorSet(m_offscreen.colorTexture().descriptor.imageView);
|
|
m_raytrace.createRtPipeline(m_descSetLayout);
|
|
m_raytrace.createRtShaderBindingTable();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Ray trace the scene
|
|
//
|
|
void HelloVulkan::raytrace(const vk::CommandBuffer& cmdBuf, const nvmath::vec4f& clearColor)
|
|
{
|
|
updateFrame();
|
|
if(m_pushConstants.frame >= m_maxFrames)
|
|
return;
|
|
|
|
m_raytrace.raytrace(cmdBuf, clearColor, m_descSet, m_size, m_pushConstants);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// If the camera matrix has changed, resets the frame.
|
|
// otherwise, increments frame.
|
|
//
|
|
void HelloVulkan::updateFrame()
|
|
{
|
|
static nvmath::mat4f refCamMatrix;
|
|
static float refFov{CameraManip.getFov()};
|
|
|
|
const auto& m = CameraManip.getMatrix();
|
|
const auto fov = CameraManip.getFov();
|
|
|
|
if(memcmp(&refCamMatrix.a00, &m.a00, sizeof(nvmath::mat4f)) != 0 || refFov != fov)
|
|
{
|
|
resetFrame();
|
|
refCamMatrix = m;
|
|
refFov = fov;
|
|
}
|
|
m_pushConstants.frame++;
|
|
}
|
|
|
|
void HelloVulkan::resetFrame()
|
|
{
|
|
m_pushConstants.frame = -1;
|
|
}
|
|
|
|
|
|
void HelloVulkan::addImplSphere(nvmath::vec3f center, float radius, int matId)
|
|
{
|
|
ObjImplicit impl;
|
|
impl.minimum = center - radius;
|
|
impl.maximum = center + radius;
|
|
impl.objType = EObjType::eSphere;
|
|
impl.matId = matId;
|
|
m_implObjects.objImpl.push_back(impl);
|
|
}
|
|
|
|
void HelloVulkan::addImplCube(nvmath::vec3f minumum, nvmath::vec3f maximum, int matId)
|
|
{
|
|
ObjImplicit impl;
|
|
impl.minimum = minumum;
|
|
impl.maximum = maximum;
|
|
impl.objType = EObjType::eCube;
|
|
impl.matId = matId;
|
|
m_implObjects.objImpl.push_back(impl);
|
|
}
|
|
|
|
void HelloVulkan::addImplMaterial(const MaterialObj& mat)
|
|
{
|
|
m_implObjects.implMat.push_back(mat);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Create a storage buffer containing the description of the scene elements
|
|
// - Which geometry is used by which instance
|
|
// - Transformation
|
|
// - Offset for texture
|
|
//
|
|
void HelloVulkan::createImplictBuffers()
|
|
{
|
|
using vkBU = vk::BufferUsageFlagBits;
|
|
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
|
|
|
|
// Not allowing empty buffers
|
|
if(m_implObjects.objImpl.empty())
|
|
m_implObjects.objImpl.push_back({});
|
|
if(m_implObjects.implMat.empty())
|
|
m_implObjects.implMat.push_back({});
|
|
|
|
auto cmdBuf = cmdGen.createCommandBuffer();
|
|
m_implObjects.implBuf = m_alloc.createBuffer(cmdBuf, m_implObjects.objImpl,
|
|
vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress);
|
|
m_implObjects.implMatBuf =
|
|
m_alloc.createBuffer(cmdBuf, m_implObjects.implMat, vkBU::eStorageBuffer);
|
|
cmdGen.submitAndWait(cmdBuf);
|
|
m_alloc.finalizeAndReleaseStaging();
|
|
m_debug.setObjectName(m_implObjects.implBuf.buffer, "implicitObj");
|
|
m_debug.setObjectName(m_implObjects.implMatBuf.buffer, "implicitMat");
|
|
}
|