bluenoise-raytracer/ray_tracing_gltf/hello_vulkan.cpp
2021-03-18 15:00:48 -07:00

964 lines
41 KiB
C++

/* Copyright (c) 2014-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sstream>
#include <vulkan/vulkan.hpp>
extern std::vector<std::string> defaultSearchPaths;
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "hello_vulkan.h"
#include "nvh/cameramanipulator.hpp"
#include "nvh/fileoperations.hpp"
#include "nvh/gltfscene.hpp"
#include "nvh/nvprint.hpp"
#include "nvvk/commands_vk.hpp"
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/pipeline_vk.hpp"
#include "nvvk/renderpasses_vk.hpp"
#include "nvvk/shaders_vk.hpp"
#include "nvh/alignment.hpp"
#include "shaders/binding.glsl"
#include "shaders/gltf.glsl"
// Holding the camera matrices
struct CameraMatrices
{
nvmath::mat4f view;
nvmath::mat4f proj;
nvmath::mat4f viewInverse;
// #VKRay
nvmath::mat4f projInverse;
};
//--------------------------------------------------------------------------------------------------
// Keep the handle on the device
// Initialize the tool to do all our allocations: buffers, images
//
void HelloVulkan::setup(const vk::Instance& instance,
const vk::Device& device,
const vk::PhysicalDevice& physicalDevice,
uint32_t queueFamily)
{
AppBase::setup(instance, device, physicalDevice, queueFamily);
m_alloc.init(device, physicalDevice);
m_debug.setup(m_device);
m_offscreenDepthFormat = nvvk::findDepthFormat(physicalDevice);
}
//--------------------------------------------------------------------------------------------------
// Called at each frame to update the camera matrix
//
void HelloVulkan::updateUniformBuffer(const vk::CommandBuffer& cmdBuf)
{
// Prepare new UBO contents on host.
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
CameraMatrices hostUBO = {};
hostUBO.view = CameraManip.getMatrix();
hostUBO.proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
// hostUBO.proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
hostUBO.viewInverse = nvmath::invert(hostUBO.view);
// #VKRay
hostUBO.projInverse = nvmath::invert(hostUBO.proj);
// UBO on the device, and what stages access it.
vk::Buffer deviceUBO = m_cameraMat.buffer;
auto uboUsageStages =
vk::PipelineStageFlagBits::eVertexShader | vk::PipelineStageFlagBits::eRayTracingShaderKHR;
// Ensure that the modified UBO is not visible to previous frames.
vk::BufferMemoryBarrier beforeBarrier;
beforeBarrier.setSrcAccessMask(vk::AccessFlagBits::eShaderRead);
beforeBarrier.setDstAccessMask(vk::AccessFlagBits::eTransferWrite);
beforeBarrier.setBuffer(deviceUBO);
beforeBarrier.setOffset(0);
beforeBarrier.setSize(sizeof hostUBO);
cmdBuf.pipelineBarrier(uboUsageStages, vk::PipelineStageFlagBits::eTransfer,
vk::DependencyFlagBits::eDeviceGroup, {}, {beforeBarrier}, {});
// Schedule the host-to-device upload. (hostUBO is copied into the cmd
// buffer so it is okay to deallocate when the function returns).
cmdBuf.updateBuffer<CameraMatrices>(m_cameraMat.buffer, 0, hostUBO);
// Making sure the updated UBO will be visible.
vk::BufferMemoryBarrier afterBarrier;
afterBarrier.setSrcAccessMask(vk::AccessFlagBits::eTransferWrite);
afterBarrier.setDstAccessMask(vk::AccessFlagBits::eShaderRead);
afterBarrier.setBuffer(deviceUBO);
afterBarrier.setOffset(0);
afterBarrier.setSize(sizeof hostUBO);
cmdBuf.pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, uboUsageStages,
vk::DependencyFlagBits::eDeviceGroup, {}, {afterBarrier}, {});
}
//--------------------------------------------------------------------------------------------------
// Describing the layout pushed when rendering
//
void HelloVulkan::createDescriptorSetLayout()
{
using vkDS = vk::DescriptorSetLayoutBinding;
using vkDT = vk::DescriptorType;
using vkSS = vk::ShaderStageFlagBits;
uint32_t nbTxt = static_cast<uint32_t>(m_textures.size());
auto& bind = m_descSetLayoutBind;
// Camera matrices (binding = 0)
bind.addBinding(vkDS(B_CAMERA, vkDT::eUniformBuffer, 1, vkSS::eVertex | vkSS::eRaygenKHR));
bind.addBinding(
vkDS(B_VERTICES, vkDT::eStorageBuffer, 1, vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
bind.addBinding(
vkDS(B_INDICES, vkDT::eStorageBuffer, 1, vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
bind.addBinding(vkDS(B_NORMALS, vkDT::eStorageBuffer, 1, vkSS::eClosestHitKHR));
bind.addBinding(vkDS(B_TEXCOORDS, vkDT::eStorageBuffer, 1, vkSS::eClosestHitKHR));
bind.addBinding(vkDS(B_MATERIALS, vkDT::eStorageBuffer, 1,
vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
bind.addBinding(vkDS(B_MATRICES, vkDT::eStorageBuffer, 1,
vkSS::eVertex | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
auto nbTextures = static_cast<uint32_t>(m_textures.size());
bind.addBinding(vkDS(B_TEXTURES, vkDT::eCombinedImageSampler, nbTextures,
vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
m_descSetLayout = m_descSetLayoutBind.createLayout(m_device);
m_descPool = m_descSetLayoutBind.createPool(m_device, 1);
m_descSet = nvvk::allocateDescriptorSet(m_device, m_descPool, m_descSetLayout);
}
//--------------------------------------------------------------------------------------------------
// Setting up the buffers in the descriptor set
//
void HelloVulkan::updateDescriptorSet()
{
std::vector<vk::WriteDescriptorSet> writes;
// Camera matrices and scene description
vk::DescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
vk::DescriptorBufferInfo vertexDesc{m_vertexBuffer.buffer, 0, VK_WHOLE_SIZE};
vk::DescriptorBufferInfo indexDesc{m_indexBuffer.buffer, 0, VK_WHOLE_SIZE};
vk::DescriptorBufferInfo normalDesc{m_normalBuffer.buffer, 0, VK_WHOLE_SIZE};
vk::DescriptorBufferInfo uvDesc{m_uvBuffer.buffer, 0, VK_WHOLE_SIZE};
vk::DescriptorBufferInfo materialDesc{m_materialBuffer.buffer, 0, VK_WHOLE_SIZE};
vk::DescriptorBufferInfo matrixDesc{m_matrixBuffer.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, B_CAMERA, &dbiUnif));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, B_VERTICES, &vertexDesc));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, B_INDICES, &indexDesc));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, B_NORMALS, &normalDesc));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, B_TEXCOORDS, &uvDesc));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, B_MATERIALS, &materialDesc));
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, B_MATRICES, &matrixDesc));
// All texture samplers
std::vector<vk::DescriptorImageInfo> diit;
for(auto& texture : m_textures)
diit.emplace_back(texture.descriptor);
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, B_TEXTURES, diit.data()));
// Writing the information
m_device.updateDescriptorSets(static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Creating the pipeline layout
//
void HelloVulkan::createGraphicsPipeline()
{
using vkSS = vk::ShaderStageFlagBits;
vk::PushConstantRange pushConstantRanges = {vkSS::eVertex | vkSS::eFragment, 0,
sizeof(ObjPushConstant)};
// Creating the Pipeline Layout
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
vk::DescriptorSetLayout descSetLayout(m_descSetLayout);
pipelineLayoutCreateInfo.setSetLayoutCount(1);
pipelineLayoutCreateInfo.setPSetLayouts(&descSetLayout);
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstantRanges);
m_pipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
// Creating the Pipeline
std::vector<std::string> paths = defaultSearchPaths;
nvvk::GraphicsPipelineGeneratorCombined gpb(m_device, m_pipelineLayout, m_offscreenRenderPass);
gpb.depthStencilState.depthTestEnable = true;
gpb.addShader(nvh::loadFile("spv/vert_shader.vert.spv", true, paths, true), vkSS::eVertex);
gpb.addShader(nvh::loadFile("spv/frag_shader.frag.spv", true, paths, true), vkSS::eFragment);
gpb.addBindingDescriptions(
{{0, sizeof(nvmath::vec3)}, {1, sizeof(nvmath::vec3)}, {2, sizeof(nvmath::vec2)}});
gpb.addAttributeDescriptions({
{0, 0, vk::Format::eR32G32B32Sfloat, 0}, // Position
{1, 1, vk::Format::eR32G32B32Sfloat, 0}, // Normal
{2, 2, vk::Format::eR32G32Sfloat, 0}, // Texcoord0
});
m_graphicsPipeline = gpb.createPipeline();
m_debug.setObjectName(m_graphicsPipeline, "Graphics");
}
//--------------------------------------------------------------------------------------------------
// Loading the OBJ file and setting up all buffers
//
void HelloVulkan::loadScene(const std::string& filename)
{
using vkBU = vk::BufferUsageFlagBits;
tinygltf::Model tmodel;
tinygltf::TinyGLTF tcontext;
std::string warn, error;
LOGI("Loading file: %s", filename.c_str());
if(!tcontext.LoadASCIIFromFile(&tmodel, &error, &warn, filename))
{
assert(!"Error while loading scene");
}
LOGW(warn.c_str());
LOGE(error.c_str());
m_gltfScene.importMaterials(tmodel);
m_gltfScene.importDrawableNodes(tmodel,
nvh::GltfAttributes::Normal | nvh::GltfAttributes::Texcoord_0);
// Create the buffers on Device and copy vertices, indices and materials
nvvk::CommandPool cmdBufGet(m_device, m_graphicsQueueIndex);
vk::CommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
m_vertexBuffer =
m_alloc.createBuffer(cmdBuf, m_gltfScene.m_positions,
vkBU::eVertexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress
| vkBU::eAccelerationStructureBuildInputReadOnlyKHR);
m_indexBuffer =
m_alloc.createBuffer(cmdBuf, m_gltfScene.m_indices,
vkBU::eIndexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress
| vkBU::eAccelerationStructureBuildInputReadOnlyKHR);
m_normalBuffer = m_alloc.createBuffer(cmdBuf, m_gltfScene.m_normals,
vkBU::eVertexBuffer | vkBU::eStorageBuffer);
m_uvBuffer = m_alloc.createBuffer(cmdBuf, m_gltfScene.m_texcoords0,
vkBU::eVertexBuffer | vkBU::eStorageBuffer);
// Copying all materials, only the elements we need
std::vector<GltfShadeMaterial> shadeMaterials;
for(auto& m : m_gltfScene.m_materials)
{
shadeMaterials.emplace_back(
GltfShadeMaterial{m.baseColorFactor, m.baseColorTexture, m.emissiveFactor});
}
m_materialBuffer = m_alloc.createBuffer(cmdBuf, shadeMaterials, vkBU::eStorageBuffer);
// Instance Matrices used by rasterizer
std::vector<nvmath::mat4f> nodeMatrices;
for(auto& node : m_gltfScene.m_nodes)
{
nodeMatrices.emplace_back(node.worldMatrix);
}
m_matrixBuffer = m_alloc.createBuffer(cmdBuf, nodeMatrices, vkBU::eStorageBuffer);
// The following is used to find the primitive mesh information in the CHIT
std::vector<RtPrimitiveLookup> primLookup;
for(auto& primMesh : m_gltfScene.m_primMeshes)
{
primLookup.push_back({primMesh.firstIndex, primMesh.vertexOffset, primMesh.materialIndex});
}
m_rtPrimLookup =
m_alloc.createBuffer(cmdBuf, primLookup, vk::BufferUsageFlagBits::eStorageBuffer);
// Creates all textures found
createTextureImages(cmdBuf, tmodel);
cmdBufGet.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
m_debug.setObjectName(m_vertexBuffer.buffer, "Vertex");
m_debug.setObjectName(m_indexBuffer.buffer, "Index");
m_debug.setObjectName(m_normalBuffer.buffer, "Normal");
m_debug.setObjectName(m_uvBuffer.buffer, "TexCoord");
m_debug.setObjectName(m_materialBuffer.buffer, "Material");
m_debug.setObjectName(m_matrixBuffer.buffer, "Matrix");
}
//--------------------------------------------------------------------------------------------------
// Creating the uniform buffer holding the camera matrices
// - Buffer is host visible
//
void HelloVulkan::createUniformBuffer()
{
using vkBU = vk::BufferUsageFlagBits;
using vkMP = vk::MemoryPropertyFlagBits;
m_cameraMat = m_alloc.createBuffer(sizeof(CameraMatrices),
vkBU::eUniformBuffer | vkBU::eTransferDst, vkMP::eDeviceLocal);
m_debug.setObjectName(m_cameraMat.buffer, "cameraMat");
}
//--------------------------------------------------------------------------------------------------
// Creating all textures and samplers
//
void HelloVulkan::createTextureImages(const vk::CommandBuffer& cmdBuf, tinygltf::Model& gltfModel)
{
using vkIU = vk::ImageUsageFlagBits;
vk::SamplerCreateInfo samplerCreateInfo{
{}, vk::Filter::eLinear, vk::Filter::eLinear, vk::SamplerMipmapMode::eLinear};
samplerCreateInfo.setMaxLod(FLT_MAX);
vk::Format format = vk::Format::eR8G8B8A8Srgb;
auto addDefaultTexture = [this]() {
// Make dummy image(1,1), needed as we cannot have an empty array
nvvk::ScopeCommandBuffer cmdBuf(m_device, m_graphicsQueueIndex);
std::array<uint8_t, 4> white = {255, 255, 255, 255};
m_textures.emplace_back(m_alloc.createTexture(
cmdBuf, 4, white.data(), nvvk::makeImage2DCreateInfo(vk::Extent2D{1, 1}), {}));
m_debug.setObjectName(m_textures.back().image, "dummy");
};
if(gltfModel.images.empty())
{
addDefaultTexture();
return;
}
m_textures.reserve(gltfModel.images.size());
for(size_t i = 0; i < gltfModel.images.size(); i++)
{
auto& gltfimage = gltfModel.images[i];
void* buffer = &gltfimage.image[0];
VkDeviceSize bufferSize = gltfimage.image.size();
auto imgSize = vk::Extent2D(gltfimage.width, gltfimage.height);
if(bufferSize == 0 || gltfimage.width == -1 || gltfimage.height == -1)
{
addDefaultTexture();
continue;
}
vk::ImageCreateInfo imageCreateInfo =
nvvk::makeImage2DCreateInfo(imgSize, format, vkIU::eSampled, true);
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, buffer, imageCreateInfo);
nvvk::cmdGenerateMipmaps(cmdBuf, image.image, format, imgSize, imageCreateInfo.mipLevels);
vk::ImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
m_textures.emplace_back(m_alloc.createTexture(image, ivInfo, samplerCreateInfo));
m_debug.setObjectName(m_textures[i].image, std::string("Txt" + std::to_string(i)).c_str());
}
}
//--------------------------------------------------------------------------------------------------
// Destroying all allocations
//
void HelloVulkan::destroyResources()
{
m_device.destroy(m_graphicsPipeline);
m_device.destroy(m_pipelineLayout);
m_device.destroy(m_descPool);
m_device.destroy(m_descSetLayout);
m_alloc.destroy(m_cameraMat);
m_alloc.destroy(m_vertexBuffer);
m_alloc.destroy(m_normalBuffer);
m_alloc.destroy(m_uvBuffer);
m_alloc.destroy(m_indexBuffer);
m_alloc.destroy(m_materialBuffer);
m_alloc.destroy(m_matrixBuffer);
m_alloc.destroy(m_rtPrimLookup);
for(auto& t : m_textures)
{
m_alloc.destroy(t);
}
//#Post
m_device.destroy(m_postPipeline);
m_device.destroy(m_postPipelineLayout);
m_device.destroy(m_postDescPool);
m_device.destroy(m_postDescSetLayout);
m_alloc.destroy(m_offscreenColor);
m_alloc.destroy(m_offscreenDepth);
m_device.destroy(m_offscreenRenderPass);
m_device.destroy(m_offscreenFramebuffer);
// #VKRay
m_rtBuilder.destroy();
m_device.destroy(m_rtDescPool);
m_device.destroy(m_rtDescSetLayout);
m_device.destroy(m_rtPipeline);
m_device.destroy(m_rtPipelineLayout);
m_alloc.destroy(m_rtSBTBuffer);
}
//--------------------------------------------------------------------------------------------------
// Drawing the scene in raster mode
//
void HelloVulkan::rasterize(const vk::CommandBuffer& cmdBuf)
{
using vkPBP = vk::PipelineBindPoint;
using vkSS = vk::ShaderStageFlagBits;
std::vector<vk::DeviceSize> offsets = {0, 0, 0};
m_debug.beginLabel(cmdBuf, "Rasterize");
// Dynamic Viewport
cmdBuf.setViewport(0, {vk::Viewport(0, 0, (float)m_size.width, (float)m_size.height, 0, 1)});
cmdBuf.setScissor(0, {{{0, 0}, {m_size.width, m_size.height}}});
// Drawing all triangles
cmdBuf.bindPipeline(vkPBP::eGraphics, m_graphicsPipeline);
cmdBuf.bindDescriptorSets(vkPBP::eGraphics, m_pipelineLayout, 0, {m_descSet}, {});
std::vector<vk::Buffer> vertexBuffers = {m_vertexBuffer.buffer, m_normalBuffer.buffer,
m_uvBuffer.buffer};
cmdBuf.bindVertexBuffers(0, static_cast<uint32_t>(vertexBuffers.size()), vertexBuffers.data(),
offsets.data());
cmdBuf.bindIndexBuffer(m_indexBuffer.buffer, 0, vk::IndexType::eUint32);
uint32_t idxNode = 0;
for(auto& node : m_gltfScene.m_nodes)
{
auto& primitive = m_gltfScene.m_primMeshes[node.primMesh];
m_pushConstant.instanceId = idxNode++;
m_pushConstant.materialId = primitive.materialIndex;
cmdBuf.pushConstants<ObjPushConstant>(
m_pipelineLayout, vk::ShaderStageFlagBits::eVertex | vk::ShaderStageFlagBits::eFragment, 0,
m_pushConstant);
cmdBuf.drawIndexed(primitive.indexCount, 1, primitive.firstIndex, primitive.vertexOffset, 0);
}
m_debug.endLabel(cmdBuf);
}
//--------------------------------------------------------------------------------------------------
// Handling resize of the window
//
void HelloVulkan::onResize(int /*w*/, int /*h*/)
{
createOffscreenRender();
updatePostDescriptorSet();
updateRtDescriptorSet();
resetFrame();
}
//////////////////////////////////////////////////////////////////////////
// Post-processing
//////////////////////////////////////////////////////////////////////////
//--------------------------------------------------------------------------------------------------
// Creating an offscreen frame buffer and the associated render pass
//
void HelloVulkan::createOffscreenRender()
{
m_alloc.destroy(m_offscreenColor);
m_alloc.destroy(m_offscreenDepth);
// Creating the color image
{
auto colorCreateInfo = nvvk::makeImage2DCreateInfo(m_size, m_offscreenColorFormat,
vk::ImageUsageFlagBits::eColorAttachment
| vk::ImageUsageFlagBits::eSampled
| vk::ImageUsageFlagBits::eStorage);
nvvk::Image image = m_alloc.createImage(colorCreateInfo);
vk::ImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, colorCreateInfo);
m_offscreenColor = m_alloc.createTexture(image, ivInfo, vk::SamplerCreateInfo());
m_offscreenColor.descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}
// Creating the depth buffer
auto depthCreateInfo =
nvvk::makeImage2DCreateInfo(m_size, m_offscreenDepthFormat,
vk::ImageUsageFlagBits::eDepthStencilAttachment);
{
nvvk::Image image = m_alloc.createImage(depthCreateInfo);
vk::ImageViewCreateInfo depthStencilView;
depthStencilView.setViewType(vk::ImageViewType::e2D);
depthStencilView.setFormat(m_offscreenDepthFormat);
depthStencilView.setSubresourceRange({vk::ImageAspectFlagBits::eDepth, 0, 1, 0, 1});
depthStencilView.setImage(image.image);
m_offscreenDepth = m_alloc.createTexture(image, depthStencilView);
}
// Setting the image layout for both color and depth
{
nvvk::CommandPool genCmdBuf(m_device, m_graphicsQueueIndex);
auto cmdBuf = genCmdBuf.createCommandBuffer();
nvvk::cmdBarrierImageLayout(cmdBuf, m_offscreenColor.image, vk::ImageLayout::eUndefined,
vk::ImageLayout::eGeneral);
nvvk::cmdBarrierImageLayout(cmdBuf, m_offscreenDepth.image, vk::ImageLayout::eUndefined,
vk::ImageLayout::eDepthStencilAttachmentOptimal,
vk::ImageAspectFlagBits::eDepth);
genCmdBuf.submitAndWait(cmdBuf);
}
// Creating a renderpass for the offscreen
if(!m_offscreenRenderPass)
{
m_offscreenRenderPass =
nvvk::createRenderPass(m_device, {m_offscreenColorFormat}, m_offscreenDepthFormat, 1, true,
true, vk::ImageLayout::eGeneral, vk::ImageLayout::eGeneral);
}
// Creating the frame buffer for offscreen
std::vector<vk::ImageView> attachments = {m_offscreenColor.descriptor.imageView,
m_offscreenDepth.descriptor.imageView};
m_device.destroy(m_offscreenFramebuffer);
vk::FramebufferCreateInfo info;
info.setRenderPass(m_offscreenRenderPass);
info.setAttachmentCount(2);
info.setPAttachments(attachments.data());
info.setWidth(m_size.width);
info.setHeight(m_size.height);
info.setLayers(1);
m_offscreenFramebuffer = m_device.createFramebuffer(info);
}
//--------------------------------------------------------------------------------------------------
// The pipeline is how things are rendered, which shaders, type of primitives, depth test and more
//
void HelloVulkan::createPostPipeline()
{
// Push constants in the fragment shader
vk::PushConstantRange pushConstantRanges = {vk::ShaderStageFlagBits::eFragment, 0, sizeof(float)};
// Creating the pipeline layout
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
pipelineLayoutCreateInfo.setSetLayoutCount(1);
pipelineLayoutCreateInfo.setPSetLayouts(&m_postDescSetLayout);
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstantRanges);
m_postPipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
// Pipeline: completely generic, no vertices
nvvk::GraphicsPipelineGeneratorCombined pipelineGenerator(m_device, m_postPipelineLayout,
m_renderPass);
pipelineGenerator.addShader(nvh::loadFile("spv/passthrough.vert.spv", true, defaultSearchPaths,
true),
vk::ShaderStageFlagBits::eVertex);
pipelineGenerator.addShader(nvh::loadFile("spv/post.frag.spv", true, defaultSearchPaths, true),
vk::ShaderStageFlagBits::eFragment);
pipelineGenerator.rasterizationState.setCullMode(vk::CullModeFlagBits::eNone);
m_postPipeline = pipelineGenerator.createPipeline();
m_debug.setObjectName(m_postPipeline, "post");
}
//--------------------------------------------------------------------------------------------------
// The descriptor layout is the description of the data that is passed to the vertex or the
// fragment program.
//
void HelloVulkan::createPostDescriptor()
{
using vkDS = vk::DescriptorSetLayoutBinding;
using vkDT = vk::DescriptorType;
using vkSS = vk::ShaderStageFlagBits;
m_postDescSetLayoutBind.addBinding(vkDS(0, vkDT::eCombinedImageSampler, 1, vkSS::eFragment));
m_postDescSetLayout = m_postDescSetLayoutBind.createLayout(m_device);
m_postDescPool = m_postDescSetLayoutBind.createPool(m_device);
m_postDescSet = nvvk::allocateDescriptorSet(m_device, m_postDescPool, m_postDescSetLayout);
}
//--------------------------------------------------------------------------------------------------
// Update the output
//
void HelloVulkan::updatePostDescriptorSet()
{
vk::WriteDescriptorSet writeDescriptorSets =
m_postDescSetLayoutBind.makeWrite(m_postDescSet, 0, &m_offscreenColor.descriptor);
m_device.updateDescriptorSets(writeDescriptorSets, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Draw a full screen quad with the attached image
//
void HelloVulkan::drawPost(vk::CommandBuffer cmdBuf)
{
m_debug.beginLabel(cmdBuf, "Post");
cmdBuf.setViewport(0, {vk::Viewport(0, 0, (float)m_size.width, (float)m_size.height, 0, 1)});
cmdBuf.setScissor(0, {{{0, 0}, {m_size.width, m_size.height}}});
auto aspectRatio = static_cast<float>(m_size.width) / static_cast<float>(m_size.height);
cmdBuf.pushConstants<float>(m_postPipelineLayout, vk::ShaderStageFlagBits::eFragment, 0,
aspectRatio);
cmdBuf.bindPipeline(vk::PipelineBindPoint::eGraphics, m_postPipeline);
cmdBuf.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, m_postPipelineLayout, 0,
m_postDescSet, {});
cmdBuf.draw(3, 1, 0, 0);
m_debug.endLabel(cmdBuf);
}
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//--------------------------------------------------------------------------------------------------
// Initialize Vulkan ray tracing
// #VKRay
void HelloVulkan::initRayTracing()
{
// Requesting ray tracing properties
auto properties =
m_physicalDevice.getProperties2<vk::PhysicalDeviceProperties2,
vk::PhysicalDeviceRayTracingPipelinePropertiesKHR>();
m_rtProperties = properties.get<vk::PhysicalDeviceRayTracingPipelinePropertiesKHR>();
m_rtBuilder.setup(m_device, &m_alloc, m_graphicsQueueIndex);
}
//--------------------------------------------------------------------------------------------------
// Converting a GLTF primitive in the Raytracing Geometry used for the BLAS
//
nvvk::RaytracingBuilderKHR::BlasInput HelloVulkan::primitiveToGeometry(
const nvh::GltfPrimMesh& prim)
{
// Building part
vk::DeviceAddress vertexAddress = m_device.getBufferAddress({m_vertexBuffer.buffer});
vk::DeviceAddress indexAddress = m_device.getBufferAddress({m_indexBuffer.buffer});
vk::AccelerationStructureGeometryTrianglesDataKHR triangles;
triangles.setVertexFormat(vk::Format::eR32G32B32Sfloat);
triangles.setVertexData(vertexAddress);
triangles.setVertexStride(sizeof(nvmath::vec3f));
triangles.setIndexType(vk::IndexType::eUint32);
triangles.setIndexData(indexAddress);
triangles.setTransformData({});
triangles.setMaxVertex(prim.vertexCount);
// Setting up the build info of the acceleration
vk::AccelerationStructureGeometryKHR asGeom;
asGeom.setGeometryType(vk::GeometryTypeKHR::eTriangles);
asGeom.setFlags(vk::GeometryFlagBitsKHR::eNoDuplicateAnyHitInvocation); // For AnyHit
asGeom.geometry.setTriangles(triangles);
vk::AccelerationStructureBuildRangeInfoKHR offset;
offset.setFirstVertex(prim.vertexOffset);
offset.setPrimitiveCount(prim.indexCount / 3);
offset.setPrimitiveOffset(prim.firstIndex * sizeof(uint32_t));
offset.setTransformOffset(0);
nvvk::RaytracingBuilderKHR::BlasInput input;
input.asGeometry.emplace_back(asGeom);
input.asBuildOffsetInfo.emplace_back(offset);
return input;
}
//--------------------------------------------------------------------------------------------------
//
//
void HelloVulkan::createBottomLevelAS()
{
// BLAS - Storing each primitive in a geometry
std::vector<nvvk::RaytracingBuilderKHR::BlasInput> allBlas;
allBlas.reserve(m_gltfScene.m_primMeshes.size());
for(auto& primMesh : m_gltfScene.m_primMeshes)
{
auto geo = primitiveToGeometry(primMesh);
allBlas.push_back({geo});
}
m_rtBuilder.buildBlas(allBlas, vk::BuildAccelerationStructureFlagBitsKHR::ePreferFastTrace);
}
void HelloVulkan::createTopLevelAS()
{
std::vector<nvvk::RaytracingBuilderKHR::Instance> tlas;
tlas.reserve(m_gltfScene.m_nodes.size());
uint32_t instID = 0;
for(auto& node : m_gltfScene.m_nodes)
{
nvvk::RaytracingBuilderKHR::Instance rayInst;
rayInst.transform = node.worldMatrix;
rayInst.instanceCustomId = node.primMesh; // gl_InstanceCustomIndexEXT: to find which primitive
rayInst.blasId = node.primMesh;
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
rayInst.hitGroupId = 0; // We will use the same hit group for all objects
tlas.emplace_back(rayInst);
}
m_rtBuilder.buildTlas(tlas, vk::BuildAccelerationStructureFlagBitsKHR::ePreferFastTrace);
}
//--------------------------------------------------------------------------------------------------
// This descriptor set holds the Acceleration structure and the output image
//
void HelloVulkan::createRtDescriptorSet()
{
using vkDT = vk::DescriptorType;
using vkSS = vk::ShaderStageFlagBits;
using vkDSLB = vk::DescriptorSetLayoutBinding;
m_rtDescSetLayoutBind.addBinding(vkDSLB(0, vkDT::eAccelerationStructureKHR, 1,
vkSS::eRaygenKHR | vkSS::eClosestHitKHR)); // TLAS
m_rtDescSetLayoutBind.addBinding(
vkDSLB(1, vkDT::eStorageImage, 1, vkSS::eRaygenKHR)); // Output image
m_rtDescSetLayoutBind.addBinding(vkDSLB(
2, vkDT::eStorageBuffer, 1, vkSS::eClosestHitKHR | vkSS::eAnyHitKHR)); // Primitive info
m_rtDescPool = m_rtDescSetLayoutBind.createPool(m_device);
m_rtDescSetLayout = m_rtDescSetLayoutBind.createLayout(m_device);
m_rtDescSet = m_device.allocateDescriptorSets({m_rtDescPool, 1, &m_rtDescSetLayout})[0];
vk::AccelerationStructureKHR tlas = m_rtBuilder.getAccelerationStructure();
vk::WriteDescriptorSetAccelerationStructureKHR descASInfo;
descASInfo.setAccelerationStructureCount(1);
descASInfo.setPAccelerationStructures(&tlas);
vk::DescriptorImageInfo imageInfo{
{}, m_offscreenColor.descriptor.imageView, vk::ImageLayout::eGeneral};
vk::DescriptorBufferInfo primitiveInfoDesc{m_rtPrimLookup.buffer, 0, VK_WHOLE_SIZE};
std::vector<vk::WriteDescriptorSet> writes;
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 0, &descASInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 1, &imageInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 2, &primitiveInfoDesc));
m_device.updateDescriptorSets(static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Writes the output image to the descriptor set
// - Required when changing resolution
//
void HelloVulkan::updateRtDescriptorSet()
{
using vkDT = vk::DescriptorType;
// (1) Output buffer
vk::DescriptorImageInfo imageInfo{
{}, m_offscreenColor.descriptor.imageView, vk::ImageLayout::eGeneral};
vk::WriteDescriptorSet wds{m_rtDescSet, 1, 0, 1, vkDT::eStorageImage, &imageInfo};
m_device.updateDescriptorSets(wds, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Pipeline for the ray tracer: all shaders, raygen, chit, miss
//
void HelloVulkan::createRtPipeline()
{
vk::ShaderModule raygenSM = nvvk::createShaderModule(
m_device, nvh::loadFile("spv/pathtrace.rgen.spv", true, defaultSearchPaths, true));
vk::ShaderModule missSM = nvvk::createShaderModule(
m_device, nvh::loadFile("spv/pathtrace.rmiss.spv", true, defaultSearchPaths, true));
// The second miss shader is invoked when a shadow ray misses the geometry. It
// simply indicates that no occlusion has been found
vk::ShaderModule shadowmissSM = nvvk::createShaderModule(
m_device, nvh::loadFile("spv/raytraceShadow.rmiss.spv", true, defaultSearchPaths, true));
std::vector<vk::PipelineShaderStageCreateInfo> stages;
// Raygen
vk::RayTracingShaderGroupCreateInfoKHR rg{vk::RayTracingShaderGroupTypeKHR::eGeneral,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
rg.setGeneralShader(static_cast<uint32_t>(stages.size()));
stages.push_back({{}, vk::ShaderStageFlagBits::eRaygenKHR, raygenSM, "main"});
m_rtShaderGroups.push_back(rg);
// Miss
vk::RayTracingShaderGroupCreateInfoKHR mg{vk::RayTracingShaderGroupTypeKHR::eGeneral,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
mg.setGeneralShader(static_cast<uint32_t>(stages.size()));
stages.push_back({{}, vk::ShaderStageFlagBits::eMissKHR, missSM, "main"});
m_rtShaderGroups.push_back(mg);
// Shadow Miss
mg.setGeneralShader(static_cast<uint32_t>(stages.size()));
stages.push_back({{}, vk::ShaderStageFlagBits::eMissKHR, shadowmissSM, "main"});
m_rtShaderGroups.push_back(mg);
// Hit Group - Closest Hit + AnyHit
vk::ShaderModule chitSM = nvvk::createShaderModule(
m_device, nvh::loadFile("spv/pathtrace.rchit.spv", true, defaultSearchPaths, true));
vk::RayTracingShaderGroupCreateInfoKHR hg{vk::RayTracingShaderGroupTypeKHR::eTrianglesHitGroup,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
hg.setClosestHitShader(static_cast<uint32_t>(stages.size()));
stages.push_back({{}, vk::ShaderStageFlagBits::eClosestHitKHR, chitSM, "main"});
m_rtShaderGroups.push_back(hg);
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
// Push constant: we want to be able to update constants used by the shaders
vk::PushConstantRange pushConstant{vk::ShaderStageFlagBits::eRaygenKHR
| vk::ShaderStageFlagBits::eClosestHitKHR
| vk::ShaderStageFlagBits::eMissKHR,
0, sizeof(RtPushConstant)};
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstant);
// Descriptor sets: one specific to ray tracing, and one shared with the rasterization pipeline
std::vector<vk::DescriptorSetLayout> rtDescSetLayouts = {m_rtDescSetLayout, m_descSetLayout};
pipelineLayoutCreateInfo.setSetLayoutCount(static_cast<uint32_t>(rtDescSetLayouts.size()));
pipelineLayoutCreateInfo.setPSetLayouts(rtDescSetLayouts.data());
m_rtPipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
// Assemble the shader stages and recursion depth info into the ray tracing pipeline
vk::RayTracingPipelineCreateInfoKHR rayPipelineInfo;
rayPipelineInfo.setStageCount(static_cast<uint32_t>(stages.size())); // Stages are shaders
rayPipelineInfo.setPStages(stages.data());
rayPipelineInfo.setGroupCount(static_cast<uint32_t>(
m_rtShaderGroups.size())); // 1-raygen, n-miss, n-(hit[+anyhit+intersect])
rayPipelineInfo.setPGroups(m_rtShaderGroups.data());
rayPipelineInfo.setMaxPipelineRayRecursionDepth(2); // Ray depth
rayPipelineInfo.setLayout(m_rtPipelineLayout);
m_rtPipeline = static_cast<const vk::Pipeline&>(
m_device.createRayTracingPipelineKHR({}, {}, rayPipelineInfo));
m_device.destroy(raygenSM);
m_device.destroy(missSM);
m_device.destroy(shadowmissSM);
m_device.destroy(chitSM);
}
//--------------------------------------------------------------------------------------------------
// The Shader Binding Table (SBT)
// - getting all shader handles and writing them in a SBT buffer
// - Besides exception, this could be always done like this
// See how the SBT buffer is used in run()
//
void HelloVulkan::createRtShaderBindingTable()
{
auto groupCount =
static_cast<uint32_t>(m_rtShaderGroups.size()); // shaders: raygen, 2 miss, chit
uint32_t groupHandleSize = m_rtProperties.shaderGroupHandleSize; // Size of a program identifier
uint32_t groupSizeAligned =
nvh::align_up(groupHandleSize, m_rtProperties.shaderGroupBaseAlignment);
// Fetch all the shader handles used in the pipeline, so that they can be written in the SBT
uint32_t sbtSize = groupCount * groupSizeAligned;
std::vector<uint8_t> shaderHandleStorage(sbtSize);
auto result = m_device.getRayTracingShaderGroupHandlesKHR(m_rtPipeline, 0, groupCount, sbtSize,
shaderHandleStorage.data());
if(result != vk::Result::eSuccess)
LOGE("Fail getRayTracingShaderGroupHandlesKHR: %s", vk::to_string(result).c_str());
// Write the handles in the SBT
m_rtSBTBuffer = m_alloc.createBuffer(
sbtSize,
vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eShaderDeviceAddressKHR
| vk::BufferUsageFlagBits::eShaderBindingTableKHR,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
m_debug.setObjectName(m_rtSBTBuffer.buffer, std::string("SBT").c_str());
// Write the handles in the SBT
void* mapped = m_alloc.map(m_rtSBTBuffer);
auto* pData = reinterpret_cast<uint8_t*>(mapped);
for(uint32_t g = 0; g < groupCount; g++)
{
memcpy(pData, shaderHandleStorage.data() + g * groupHandleSize, groupHandleSize); // raygen
pData += groupSizeAligned;
}
m_alloc.unmap(m_rtSBTBuffer);
m_alloc.finalizeAndReleaseStaging();
}
//--------------------------------------------------------------------------------------------------
// Ray Tracing the scene
//
void HelloVulkan::raytrace(const vk::CommandBuffer& cmdBuf, const nvmath::vec4f& clearColor)
{
updateFrame();
m_debug.beginLabel(cmdBuf, "Ray trace");
// Initializing push constant values
m_rtPushConstants.clearColor = clearColor;
m_rtPushConstants.lightPosition = m_pushConstant.lightPosition;
m_rtPushConstants.lightIntensity = m_pushConstant.lightIntensity;
m_rtPushConstants.lightType = m_pushConstant.lightType;
cmdBuf.bindPipeline(vk::PipelineBindPoint::eRayTracingKHR, m_rtPipeline);
cmdBuf.bindDescriptorSets(vk::PipelineBindPoint::eRayTracingKHR, m_rtPipelineLayout, 0,
{m_rtDescSet, m_descSet}, {});
cmdBuf.pushConstants<RtPushConstant>(m_rtPipelineLayout,
vk::ShaderStageFlagBits::eRaygenKHR
| vk::ShaderStageFlagBits::eClosestHitKHR
| vk::ShaderStageFlagBits::eMissKHR,
0, m_rtPushConstants);
// Size of a program identifier
uint32_t groupSize =
nvh::align_up(m_rtProperties.shaderGroupHandleSize, m_rtProperties.shaderGroupBaseAlignment);
uint32_t groupStride = groupSize;
vk::DeviceAddress sbtAddress = m_device.getBufferAddress({m_rtSBTBuffer.buffer});
using Stride = vk::StridedDeviceAddressRegionKHR;
std::array<Stride, 4> strideAddresses{
Stride{sbtAddress + 0u * groupSize, groupStride, groupSize * 1}, // raygen
Stride{sbtAddress + 1u * groupSize, groupStride, groupSize * 2}, // miss
Stride{sbtAddress + 3u * groupSize, groupStride, groupSize * 1}, // hit
Stride{0u, 0u, 0u}}; // callable
cmdBuf.traceRaysKHR(&strideAddresses[0], &strideAddresses[1], &strideAddresses[2],
&strideAddresses[3], //
m_size.width, m_size.height,
1); //
m_debug.endLabel(cmdBuf);
}
//--------------------------------------------------------------------------------------------------
// If the camera matrix has changed, resets the frame.
// otherwise, increments frame.
//
void HelloVulkan::updateFrame()
{
static nvmath::mat4f refCamMatrix;
static float refFov{CameraManip.getFov()};
const auto& m = CameraManip.getMatrix();
const auto fov = CameraManip.getFov();
if(memcmp(&refCamMatrix.a00, &m.a00, sizeof(nvmath::mat4f)) != 0 || refFov != fov)
{
resetFrame();
refCamMatrix = m;
refFov = fov;
}
m_rtPushConstants.frame++;
}
void HelloVulkan::resetFrame()
{
m_rtPushConstants.frame = -1;
}