bluenoise-raytracer/ray_tracing__advance/raytrace.cpp
2020-04-29 13:59:03 +02:00

497 lines
23 KiB
C++

/* Copyright (c) 2014-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "raytrace.hpp"
#include "nvh/fileoperations.hpp"
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/shaders_vk.hpp"
#include "obj_loader.h"
extern std::vector<std::string> defaultSearchPaths;
void Raytracer::setup(const vk::Device& device,
const vk::PhysicalDevice& physicalDevice,
nvvk::Allocator* allocator,
uint32_t queueFamily)
{
m_device = device;
m_physicalDevice = physicalDevice;
m_alloc = allocator;
m_graphicsQueueIndex = queueFamily;
// Requesting ray tracing properties
auto properties = m_physicalDevice.getProperties2<vk::PhysicalDeviceProperties2,
vk::PhysicalDeviceRayTracingPropertiesKHR>();
m_rtProperties = properties.get<vk::PhysicalDeviceRayTracingPropertiesKHR>();
m_rtBuilder.setup(m_device, allocator, m_graphicsQueueIndex);
m_debug.setup(device);
}
void Raytracer::destroy()
{
m_rtBuilder.destroy();
m_device.destroy(m_rtDescPool);
m_device.destroy(m_rtDescSetLayout);
m_device.destroy(m_rtPipeline);
m_device.destroy(m_rtPipelineLayout);
m_alloc->destroy(m_rtSBTBuffer);
}
//--------------------------------------------------------------------------------------------------
// Converting a OBJ primitive to the ray tracing geometry used for the BLAS
//
nvvk::RaytracingBuilderKHR::Blas Raytracer::objectToVkGeometryKHR(const ObjModel& model)
{
// Setting up the creation info of acceleration structure
vk::AccelerationStructureCreateGeometryTypeInfoKHR asCreate;
asCreate.setGeometryType(vk::GeometryTypeKHR::eTriangles);
asCreate.setIndexType(vk::IndexType::eUint32);
asCreate.setVertexFormat(vk::Format::eR32G32B32Sfloat);
asCreate.setMaxPrimitiveCount(model.nbIndices / 3); // Nb triangles
asCreate.setMaxVertexCount(model.nbVertices);
asCreate.setAllowsTransforms(VK_FALSE); // No adding transformation matrices
// Building part
vk::DeviceAddress vertexAddress = m_device.getBufferAddress({model.vertexBuffer.buffer});
vk::DeviceAddress indexAddress = m_device.getBufferAddress({model.indexBuffer.buffer});
vk::AccelerationStructureGeometryTrianglesDataKHR triangles;
triangles.setVertexFormat(asCreate.vertexFormat);
triangles.setVertexData(vertexAddress);
triangles.setVertexStride(sizeof(VertexObj));
triangles.setIndexType(asCreate.indexType);
triangles.setIndexData(indexAddress);
triangles.setTransformData({});
// Setting up the build info of the acceleration
vk::AccelerationStructureGeometryKHR asGeom;
asGeom.setGeometryType(asCreate.geometryType);
asGeom.setFlags(vk::GeometryFlagBitsKHR::eNoDuplicateAnyHitInvocation); // For AnyHit
asGeom.geometry.setTriangles(triangles);
vk::AccelerationStructureBuildOffsetInfoKHR offset;
offset.setFirstVertex(0);
offset.setPrimitiveCount(asCreate.maxPrimitiveCount);
offset.setPrimitiveOffset(0);
offset.setTransformOffset(0);
nvvk::RaytracingBuilderKHR::Blas blas;
blas.asGeometry.emplace_back(asGeom);
blas.asCreateGeometryInfo.emplace_back(asCreate);
blas.asBuildOffsetInfo.emplace_back(offset);
return blas;
}
//--------------------------------------------------------------------------------------------------
// Returning the ray tracing geometry used for the BLAS, containing all spheres
//
nvvk::RaytracingBuilderKHR::Blas Raytracer::implicitToVkGeometryKHR(const ImplInst& implicitObj)
{
// Setting up the creation info of acceleration structure
vk::AccelerationStructureCreateGeometryTypeInfoKHR asCreate;
asCreate.setGeometryType(vk::GeometryTypeKHR::eAabbs);
asCreate.setIndexType(vk::IndexType::eNoneKHR);
asCreate.setVertexFormat(vk::Format::eUndefined);
asCreate.setMaxPrimitiveCount(static_cast<uint32_t>(implicitObj.objImpl.size())); // Nb triangles
asCreate.setMaxVertexCount(0);
asCreate.setAllowsTransforms(VK_FALSE); // No adding transformation matrices
vk::DeviceAddress dataAddress = m_device.getBufferAddress({implicitObj.implBuf.buffer});
vk::AccelerationStructureGeometryAabbsDataKHR aabbs;
aabbs.setData(dataAddress);
aabbs.setStride(sizeof(ObjImplicit));
// Setting up the build info of the acceleration
vk::AccelerationStructureGeometryKHR asGeom;
asGeom.setGeometryType(asCreate.geometryType);
asGeom.setFlags(vk::GeometryFlagBitsKHR::eNoDuplicateAnyHitInvocation); // For AnyHit
asGeom.geometry.setAabbs(aabbs);
vk::AccelerationStructureBuildOffsetInfoKHR offset;
offset.setFirstVertex(0);
offset.setPrimitiveCount(asCreate.maxPrimitiveCount);
offset.setPrimitiveOffset(0);
offset.setTransformOffset(0);
nvvk::RaytracingBuilderKHR::Blas blas;
blas.asGeometry.emplace_back(asGeom);
blas.asCreateGeometryInfo.emplace_back(asCreate);
blas.asBuildOffsetInfo.emplace_back(offset);
return blas;
}
void Raytracer::createBottomLevelAS(std::vector<ObjModel>& models, ImplInst& implicitObj)
{
// BLAS - Storing each primitive in a geometry
std::vector<nvvk::RaytracingBuilderKHR::Blas> allBlas;
allBlas.reserve(models.size());
for(const auto& obj : models)
{
auto blas = objectToVkGeometryKHR(obj);
// We could add more geometry in each BLAS, but we add only one for now
allBlas.emplace_back(blas);
}
// Adding implicit
if(!implicitObj.objImpl.empty())
{
auto blas = implicitToVkGeometryKHR(implicitObj);
allBlas.emplace_back(blas);
implicitObj.blasId = static_cast<int>(allBlas.size() - 1); // remember blas ID for tlas
}
m_rtBuilder.buildBlas(allBlas, vk::BuildAccelerationStructureFlagBitsKHR::ePreferFastTrace
| vk::BuildAccelerationStructureFlagBitsKHR::eAllowCompaction);
}
void Raytracer::createTopLevelAS(std::vector<ObjInstance>& instances, ImplInst& implicitObj)
{
std::vector<nvvk::RaytracingBuilderKHR::Instance> tlas;
tlas.reserve(instances.size());
for(int i = 0; i < static_cast<int>(instances.size()); i++)
{
nvvk::RaytracingBuilderKHR::Instance rayInst;
rayInst.transform = instances[i].transform; // Position of the instance
rayInst.instanceId = i; // gl_InstanceID
rayInst.blasId = instances[i].objIndex;
rayInst.hitGroupId = 0; // We will use the same hit group for all objects
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
tlas.emplace_back(rayInst);
}
// Add the blas containing all implicit
if(!implicitObj.objImpl.empty())
{
nvvk::RaytracingBuilderKHR::Instance rayInst;
rayInst.transform = implicitObj.transform; // Position of the instance
rayInst.instanceId = static_cast<uint32_t>(implicitObj.blasId); // Same for material index
rayInst.blasId = static_cast<uint32_t>(implicitObj.blasId);
rayInst.hitGroupId = 1; // We will use the same hit group for all objects (the second one)
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
tlas.emplace_back(rayInst);
}
m_rtBuilder.buildTlas(tlas, vk::BuildAccelerationStructureFlagBitsKHR::ePreferFastTrace);
}
//--------------------------------------------------------------------------------------------------
// This descriptor set holds the Acceleration structure and the output image
//
void Raytracer::createRtDescriptorSet(const vk::ImageView& outputImage)
{
using vkDT = vk::DescriptorType;
using vkSS = vk::ShaderStageFlagBits;
using vkDSLB = vk::DescriptorSetLayoutBinding;
m_rtDescSetLayoutBind.addBinding(vkDSLB(0, vkDT::eAccelerationStructureKHR, 1,
vkSS::eRaygenKHR | vkSS::eClosestHitKHR)); // TLAS
m_rtDescSetLayoutBind.addBinding(
vkDSLB(1, vkDT::eStorageImage, 1, vkSS::eRaygenKHR)); // Output image
m_rtDescPool = m_rtDescSetLayoutBind.createPool(m_device);
m_rtDescSetLayout = m_rtDescSetLayoutBind.createLayout(m_device);
m_rtDescSet = m_device.allocateDescriptorSets({m_rtDescPool, 1, &m_rtDescSetLayout})[0];
vk::AccelerationStructureKHR tlas = m_rtBuilder.getAccelerationStructure();
vk::WriteDescriptorSetAccelerationStructureKHR descASInfo;
descASInfo.setAccelerationStructureCount(1);
descASInfo.setPAccelerationStructures(&tlas);
vk::DescriptorImageInfo imageInfo{{}, outputImage, vk::ImageLayout::eGeneral};
std::vector<vk::WriteDescriptorSet> writes;
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 0, &descASInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 1, &imageInfo));
m_device.updateDescriptorSets(static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Writes the output image to the descriptor set
// - Required when changing resolution
//
void Raytracer::updateRtDescriptorSet(const vk::ImageView& outputImage)
{
using vkDT = vk::DescriptorType;
// (1) Output buffer
vk::DescriptorImageInfo imageInfo{{}, outputImage, vk::ImageLayout::eGeneral};
vk::WriteDescriptorSet wds{m_rtDescSet, 1, 0, 1, vkDT::eStorageImage, &imageInfo};
m_device.updateDescriptorSets(wds, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Pipeline for the ray tracer: all shaders, raygen, chit, miss
//
void Raytracer::createRtPipeline(vk::DescriptorSetLayout& sceneDescLayout)
{
std::vector<std::string> paths = defaultSearchPaths;
vk::ShaderModule raygenSM =
nvvk::createShaderModule(m_device, //
nvh::loadFile("shaders/raytrace.rgen.spv", true, paths));
vk::ShaderModule missSM =
nvvk::createShaderModule(m_device, //
nvh::loadFile("shaders/raytrace.rmiss.spv", true, paths));
// The second miss shader is invoked when a shadow ray misses the geometry. It
// simply indicates that no occlusion has been found
vk::ShaderModule shadowmissSM =
nvvk::createShaderModule(m_device,
nvh::loadFile("shaders/raytraceShadow.rmiss.spv", true, paths));
std::vector<vk::PipelineShaderStageCreateInfo> stages;
// Raygen
vk::RayTracingShaderGroupCreateInfoKHR rg{vk::RayTracingShaderGroupTypeKHR::eGeneral,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
stages.push_back({{}, vk::ShaderStageFlagBits::eRaygenKHR, raygenSM, "main"});
rg.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
m_rtShaderGroups.push_back(rg);
// Miss
vk::RayTracingShaderGroupCreateInfoKHR mg{vk::RayTracingShaderGroupTypeKHR::eGeneral,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
stages.push_back({{}, vk::ShaderStageFlagBits::eMissKHR, missSM, "main"});
mg.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
m_rtShaderGroups.push_back(mg);
// Shadow Miss
stages.push_back({{}, vk::ShaderStageFlagBits::eMissKHR, shadowmissSM, "main"});
mg.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
m_rtShaderGroups.push_back(mg);
// Hit Group0 - Closest Hit + AnyHit
vk::ShaderModule chitSM =
nvvk::createShaderModule(m_device, //
nvh::loadFile("shaders/raytrace.rchit.spv", true, paths));
vk::ShaderModule ahitSM =
nvvk::createShaderModule(m_device, //
nvh::loadFile("shaders/raytrace.rahit.spv", true, paths));
vk::RayTracingShaderGroupCreateInfoKHR hg{vk::RayTracingShaderGroupTypeKHR::eTrianglesHitGroup,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
stages.push_back({{}, vk::ShaderStageFlagBits::eClosestHitKHR, chitSM, "main"});
hg.setClosestHitShader(static_cast<uint32_t>(stages.size() - 1));
stages.push_back({{}, vk::ShaderStageFlagBits::eAnyHitKHR, ahitSM, "main"});
hg.setAnyHitShader(static_cast<uint32_t>(stages.size() - 1));
m_rtShaderGroups.push_back(hg);
// Hit Group1 - Closest Hit + Intersection (procedural)
vk::ShaderModule chit2SM =
nvvk::createShaderModule(m_device, //
nvh::loadFile("shaders/raytrace2.rchit.spv", true, paths));
vk::ShaderModule ahit2SM =
nvvk::createShaderModule(m_device, //
nvh::loadFile("shaders/raytrace2.rahit.spv", true, paths));
vk::ShaderModule rintSM =
nvvk::createShaderModule(m_device, //
nvh::loadFile("shaders/raytrace.rint.spv", true, paths));
{
vk::RayTracingShaderGroupCreateInfoKHR hg{vk::RayTracingShaderGroupTypeKHR::eProceduralHitGroup,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
stages.push_back({{}, vk::ShaderStageFlagBits::eClosestHitKHR, chit2SM, "main"});
hg.setClosestHitShader(static_cast<uint32_t>(stages.size() - 1));
stages.push_back({{}, vk::ShaderStageFlagBits::eAnyHitKHR, ahit2SM, "main"});
hg.setAnyHitShader(static_cast<uint32_t>(stages.size() - 1));
stages.push_back({{}, vk::ShaderStageFlagBits::eIntersectionKHR, rintSM, "main"});
hg.setIntersectionShader(static_cast<uint32_t>(stages.size() - 1));
m_rtShaderGroups.push_back(hg);
}
// Callable shaders
vk::RayTracingShaderGroupCreateInfoKHR callGroup{vk::RayTracingShaderGroupTypeKHR::eGeneral,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
vk::ShaderModule call0 =
nvvk::createShaderModule(m_device,
nvh::loadFile("shaders/light_point.rcall.spv", true, paths));
vk::ShaderModule call1 =
nvvk::createShaderModule(m_device,
nvh::loadFile("shaders/light_spot.rcall.spv", true, paths));
vk::ShaderModule call2 =
nvvk::createShaderModule(m_device, nvh::loadFile("shaders/light_inf.rcall.spv", true, paths));
stages.push_back({{}, vk::ShaderStageFlagBits::eCallableKHR, call0, "main"});
callGroup.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
m_rtShaderGroups.push_back(callGroup);
stages.push_back({{}, vk::ShaderStageFlagBits::eCallableKHR, call1, "main"});
callGroup.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
m_rtShaderGroups.push_back(callGroup);
stages.push_back({{}, vk::ShaderStageFlagBits::eCallableKHR, call2, "main"});
callGroup.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
m_rtShaderGroups.push_back(callGroup);
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
// Push constant: we want to be able to update constants used by the shaders
vk::PushConstantRange pushConstant{vk::ShaderStageFlagBits::eRaygenKHR
| vk::ShaderStageFlagBits::eClosestHitKHR
| vk::ShaderStageFlagBits::eMissKHR
| vk::ShaderStageFlagBits::eCallableKHR,
0, sizeof(RtPushConstants)};
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstant);
// Descriptor sets: one specific to ray tracing, and one shared with the rasterization pipeline
std::vector<vk::DescriptorSetLayout> rtDescSetLayouts = {m_rtDescSetLayout, sceneDescLayout};
pipelineLayoutCreateInfo.setSetLayoutCount(static_cast<uint32_t>(rtDescSetLayouts.size()));
pipelineLayoutCreateInfo.setPSetLayouts(rtDescSetLayouts.data());
m_rtPipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
// Assemble the shader stages and recursion depth info into the ray tracing pipeline
vk::RayTracingPipelineCreateInfoKHR rayPipelineInfo;
rayPipelineInfo.setStageCount(static_cast<uint32_t>(stages.size())); // Stages are shaders
rayPipelineInfo.setPStages(stages.data());
rayPipelineInfo.setGroupCount(static_cast<uint32_t>(
m_rtShaderGroups.size())); // 1-raygen, n-miss, n-(hit[+anyhit+intersect])
rayPipelineInfo.setPGroups(m_rtShaderGroups.data());
rayPipelineInfo.setMaxRecursionDepth(2); // Ray depth
rayPipelineInfo.setLayout(m_rtPipelineLayout);
m_rtPipeline = m_device.createRayTracingPipelineKHR({}, rayPipelineInfo).value;
m_device.destroy(raygenSM);
m_device.destroy(missSM);
m_device.destroy(shadowmissSM);
m_device.destroy(chitSM);
m_device.destroy(ahitSM);
m_device.destroy(chit2SM);
m_device.destroy(ahit2SM);
m_device.destroy(rintSM);
m_device.destroy(call0);
m_device.destroy(call1);
m_device.destroy(call2);
}
//--------------------------------------------------------------------------------------------------
// The Shader Binding Table (SBT)
// - getting all shader handles and writing them in a SBT buffer
// - Besides exception, this could be always done like this
// See how the SBT buffer is used in run()
//
void Raytracer::createRtShaderBindingTable()
{
auto groupCount =
static_cast<uint32_t>(m_rtShaderGroups.size()); // 3 shaders: raygen, miss, chit
uint32_t groupHandleSize = m_rtProperties.shaderGroupHandleSize; // Size of a program identifier
// Fetch all the shader handles used in the pipeline, so that they can be written in the SBT
uint32_t sbtSize = groupCount * groupHandleSize;
std::vector<uint8_t> shaderHandleStorage(sbtSize);
m_device.getRayTracingShaderGroupHandlesKHR(m_rtPipeline, 0, groupCount, sbtSize,
shaderHandleStorage.data());
// Write the handles in the SBT
nvvk::CommandPool genCmdBuf(m_device, m_graphicsQueueIndex);
vk::CommandBuffer cmdBuf = genCmdBuf.createCommandBuffer();
m_rtSBTBuffer =
m_alloc->createBuffer(cmdBuf, shaderHandleStorage, vk::BufferUsageFlagBits::eRayTracingKHR);
m_debug.setObjectName(m_rtSBTBuffer.buffer, "SBT");
genCmdBuf.submitAndWait(cmdBuf);
m_alloc->finalizeAndReleaseStaging();
}
//--------------------------------------------------------------------------------------------------
// Ray Tracing the scene
//
void Raytracer::raytrace(const vk::CommandBuffer& cmdBuf,
const nvmath::vec4f& clearColor,
vk::DescriptorSet& sceneDescSet,
vk::Extent2D& size,
ObjPushConstants& sceneConstants)
{
m_debug.beginLabel(cmdBuf, "Ray trace");
// Initializing push constant values
m_rtPushConstants.clearColor = clearColor;
m_rtPushConstants.lightPosition = sceneConstants.lightPosition;
m_rtPushConstants.lightIntensity = sceneConstants.lightIntensity;
m_rtPushConstants.lightDirection = sceneConstants.lightDirection;
m_rtPushConstants.lightSpotCutoff = sceneConstants.lightSpotCutoff;
m_rtPushConstants.lightSpotOuterCutoff = sceneConstants.lightSpotOuterCutoff;
m_rtPushConstants.lightType = sceneConstants.lightType;
m_rtPushConstants.frame = sceneConstants.frame;
cmdBuf.bindPipeline(vk::PipelineBindPoint::eRayTracingKHR, m_rtPipeline);
cmdBuf.bindDescriptorSets(vk::PipelineBindPoint::eRayTracingKHR, m_rtPipelineLayout, 0,
{m_rtDescSet, sceneDescSet}, {});
cmdBuf.pushConstants<RtPushConstants>(m_rtPipelineLayout,
vk::ShaderStageFlagBits::eRaygenKHR
| vk::ShaderStageFlagBits::eClosestHitKHR
| vk::ShaderStageFlagBits::eMissKHR
| vk::ShaderStageFlagBits::eCallableKHR,
0, m_rtPushConstants);
vk::DeviceSize progSize = m_rtProperties.shaderGroupHandleSize; // Size of a program identifier
vk::DeviceSize rayGenOffset = 0u * progSize; // Start at the beginning of m_sbtBuffer
vk::DeviceSize missOffset = 1u * progSize; // Jump over raygen
vk::DeviceSize hitGroupOffset = 3u * progSize; // Jump over the previous shaders
vk::DeviceSize callableGroupOffset = 5u * progSize; // Jump over the previous shaders
vk::DeviceSize sbtSize = (vk::DeviceSize)m_rtShaderGroups.size() * progSize;
const vk::StridedBufferRegionKHR raygenShaderBindingTable = {m_rtSBTBuffer.buffer, rayGenOffset,
progSize, sbtSize};
const vk::StridedBufferRegionKHR missShaderBindingTable = {m_rtSBTBuffer.buffer, missOffset,
progSize, sbtSize};
const vk::StridedBufferRegionKHR hitShaderBindingTable = {m_rtSBTBuffer.buffer, hitGroupOffset,
progSize, sbtSize};
const vk::StridedBufferRegionKHR callableShaderBindingTable = {
m_rtSBTBuffer.buffer, callableGroupOffset, progSize, sbtSize};
cmdBuf.traceRaysKHR(&raygenShaderBindingTable, &missShaderBindingTable, &hitShaderBindingTable,
&callableShaderBindingTable, //
size.width, size.height, 1); //
m_debug.endLabel(cmdBuf);
}