bluenoise-raytracer/ray_tracing__advance/shaders/raytrace2.rchit

132 lines
3.9 KiB
GLSL

#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#include "raycommon.glsl"
#include "wavefront.glsl"
hitAttributeEXT vec3 attribs;
// clang-format off
layout(location = 0) rayPayloadInEXT hitPayload prd;
layout(location = 1) rayPayloadEXT bool isShadowed;
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 2, set = 1, scalar) buffer ScnDesc { sceneDesc i[]; } scnDesc;
layout(binding = 5, set = 1, scalar) buffer Vertices { Vertex v[]; } vertices[];
layout(binding = 6, set = 1) buffer Indices { uint i[]; } indices[];
layout(binding = 1, set = 1, scalar) buffer MatColorBufferObject { WaveFrontMaterial m[]; } materials[];
layout(binding = 3, set = 1) uniform sampler2D textureSamplers[];
layout(binding = 4, set = 1) buffer MatIndexColorBuffer { int i[]; } matIndex[];
layout(binding = 7, set = 1, scalar) buffer allImplicits_ {Implicit i[];} allImplicits;
// clang-format on
layout(push_constant) uniform Constants
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
vec3 lightDirection;
float lightSpotCutoff;
float lightSpotOuterCutoff;
int lightType;
}
pushC;
layout(location = 0) callableDataEXT rayLight cLight;
void main()
{
vec3 worldPos = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
Implicit impl = allImplicits.i[gl_PrimitiveID];
// Computing the normal at hit position
vec3 normal;
if(gl_HitKindEXT == KIND_SPHERE)
{
vec3 center = (impl.maximum + impl.minimum) * 0.5;
normal = normalize(worldPos - center);
}
else if(gl_HitKindEXT == KIND_CUBE)
{
const float epsilon = 0.00001;
if(abs(impl.maximum.x - worldPos.x) < epsilon)
normal = vec3(1, 0, 0);
else if(abs(impl.maximum.y - worldPos.y) < epsilon)
normal = vec3(0, 1, 0);
else if(abs(impl.maximum.z - worldPos.z) < epsilon)
normal = vec3(0, 0, 1);
else if(abs(impl.minimum.x - worldPos.x) < epsilon)
normal = vec3(-1, 0, 0);
else if(abs(impl.minimum.y - worldPos.y) < epsilon)
normal = vec3(0, -1, 0);
else if(abs(impl.minimum.z - worldPos.z) < epsilon)
normal = vec3(0, 0, -1);
}
cLight.inHitPosition = worldPos;
executeCallableEXT(pushC.lightType, 0);
// Material of the object
WaveFrontMaterial mat = materials[gl_InstanceCustomIndexEXT].m[impl.matId];
// Diffuse
vec3 diffuse = computeDiffuse(mat, cLight.outLightDir, normal);
vec3 specular = vec3(0);
float attenuation = 1;
// Tracing shadow ray only if the light is visible from the surface
if(dot(normal, cLight.outLightDir) > 0)
{
float tMin = 0.001;
float tMax = cLight.outLightDistance;
vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
vec3 rayDir = cLight.outLightDir;
uint flags = gl_RayFlagsSkipClosestHitShaderEXT;
isShadowed = true;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask
0, // sbtRecordOffset
0, // sbtRecordStride
1, // missIndex
origin, // ray origin
tMin, // ray min range
rayDir, // ray direction
tMax, // ray max range
1 // payload (location = 1)
);
if(isShadowed)
{
attenuation = 0.3;
}
else
{
// Specular
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, cLight.outLightDir, normal);
}
}
// Reflection
if(mat.illum == 3)
{
vec3 origin = worldPos;
vec3 rayDir = reflect(gl_WorldRayDirectionEXT, normal);
prd.attenuation *= mat.specular;
prd.done = 0;
prd.rayOrigin = origin;
prd.rayDir = rayDir;
}
prd.hitValue = vec3(cLight.outIntensity * attenuation * (diffuse + specular));
}