bluenoise-raytracer/ray_tracing_instances/shaders/raytrace.rchit

134 lines
4.3 KiB
GLSL

#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#include "raycommon.glsl"
#include "wavefront.glsl"
hitAttributeEXT vec3 attribs;
// clang-format off
layout(location = 0) rayPayloadInEXT hitPayload prd;
layout(location = 1) rayPayloadEXT bool isShadowed;
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 2, set = 1, scalar) buffer ScnDesc { sceneDesc i[]; } scnDesc;
layout(binding = 5, set = 1, scalar) buffer Vertices { Vertex v[]; } vertices[];
layout(binding = 6, set = 1) buffer Indices { uint i[]; } indices[];
layout(binding = 1, set = 1, scalar) buffer MatColorBufferObject { WaveFrontMaterial m[]; } materials[];
layout(binding = 3, set = 1) uniform sampler2D textureSamplers[];
layout(binding = 4, set = 1) buffer MatIndexColorBuffer { int i[]; } matIndex[];
// clang-format on
layout(push_constant) uniform Constants
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
}
pushC;
void main()
{
// Object of this instance
uint objId = scnDesc.i[gl_InstanceID].objId;
// Indices of the triangle
ivec3 ind = ivec3(indices[objId].i[3 * gl_PrimitiveID + 0], //
indices[objId].i[3 * gl_PrimitiveID + 1], //
indices[objId].i[3 * gl_PrimitiveID + 2]); //
// Vertex of the triangle
Vertex v0 = vertices[objId].v[ind.x];
Vertex v1 = vertices[objId].v[ind.y];
Vertex v2 = vertices[objId].v[ind.z];
const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y);
// Computing the normal at hit position
vec3 normal = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z;
// Transforming the normal to world space
normal = normalize(vec3(scnDesc.i[gl_InstanceID].transfoIT * vec4(normal, 0.0)));
// Computing the coordinates of the hit position
vec3 worldPos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z;
// Transforming the position to world space
worldPos = vec3(scnDesc.i[gl_InstanceID].transfo * vec4(worldPos, 1.0));
// Vector toward the light
vec3 L;
float lightIntensity = pushC.lightIntensity;
float lightDistance = 100000.0;
// Point light
if(pushC.lightType == 0)
{
vec3 lDir = pushC.lightPosition - worldPos;
lightDistance = length(lDir);
lightIntensity = pushC.lightIntensity / (lightDistance * lightDistance);
L = normalize(lDir);
}
else // Directional light
{
L = normalize(pushC.lightPosition - vec3(0));
}
// Material of the object
int matIdx = matIndex[objId].i[gl_PrimitiveID];
WaveFrontMaterial mat = materials[objId].m[matIdx];
// Diffuse
vec3 diffuse = computeDiffuse(mat, L, normal);
if(mat.textureId >= 0)
{
uint txtId = mat.textureId + scnDesc.i[gl_InstanceID].txtOffset;
vec2 texCoord =
v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z;
diffuse *= texture(textureSamplers[txtId], texCoord).xyz;
}
vec3 specular = vec3(0);
float attenuation = 1;
// Tracing shadow ray only if the light is visible from the surface
if(dot(normal, L) > 0)
{
float tMin = 0.001;
float tMax = lightDistance;
vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
vec3 rayDir = L;
uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT
| gl_RayFlagsSkipClosestHitShaderEXT;
isShadowed = true;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask
0, // sbtRecordOffset
0, // sbtRecordStride
1, // missIndex
origin, // ray origin
tMin, // ray min range
rayDir, // ray direction
tMax, // ray max range
1 // payload (location = 1)
);
if(isShadowed)
{
attenuation = 0.3;
}
else
{
// Specular
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, normal);
}
}
prd.hitValue = vec3(lightIntensity * attenuation * (diffuse + specular));
}