bluenoise-raytracer/ray_tracing_indirect_scissor/shaders/raytrace.rchit
2021-09-07 09:42:21 +02:00

199 lines
7.7 KiB
GLSL

/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
hitAttributeEXT vec2 attribs;
// clang-format off
layout(location = 0) rayPayloadInEXT hitPayload prd;
layout(location = 1) rayPayloadEXT bool isShadowed;
layout(location = 2) rayPayloadEXT int hitLanternInstance;
layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object
layout(buffer_reference, scalar) buffer Indices {ivec3 i[]; }; // Triangle indices
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(set = 0, binding = eTlas) uniform accelerationStructureEXT topLevelAS;
layout(set = 0, binding = eLanterns) buffer LanternArray { LanternIndirectEntry lanterns[]; } lanterns;
layout(set = 1, binding = eObjDescs, scalar) buffer ObjDesc_ { ObjDesc i[]; } objDesc;
layout(set = 1, binding = eTextures) uniform sampler2D textureSamplers[];
layout(push_constant) uniform _PushConstantRay { PushConstantRay pcRay; };
// clang-format on
void main()
{
// Object data
ObjDesc objResource = objDesc.i[gl_InstanceCustomIndexEXT];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
Indices indices = Indices(objResource.indexAddress);
Vertices vertices = Vertices(objResource.vertexAddress);
// Indices of the triangle
ivec3 ind = indices.i[gl_PrimitiveID];
// Vertex of the triangle
Vertex v0 = vertices.v[ind.x];
Vertex v1 = vertices.v[ind.y];
Vertex v2 = vertices.v[ind.z];
const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y);
// Computing the coordinates of the hit position
const vec3 pos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z;
const vec3 worldPos = vec3(gl_ObjectToWorldEXT * vec4(pos, 1.0)); // Transforming the position to world space
// Computing the normal at hit position
const vec3 nrm = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z;
const vec3 worldNrm = normalize(vec3(nrm * gl_WorldToObjectEXT)); // Transforming the normal to world space
// Vector toward the light
vec3 L;
vec3 colorIntensity = vec3(pcRay.lightIntensity);
float lightDistance = 100000.0;
// ray direction is towards lantern, if in lantern pass.
if(pcRay.lanternPassNumber >= 0)
{
LanternIndirectEntry lantern = lanterns.lanterns[pcRay.lanternPassNumber];
vec3 lDir = vec3(lantern.x, lantern.y, lantern.z) - worldPos;
lightDistance = length(lDir);
vec3 color = vec3(lantern.red, lantern.green, lantern.blue);
// Lantern light decreases linearly. Not physically accurate, but looks good
// and avoids a hard "edge" at the radius limit. Use a constant value
// if lantern debug is enabled to clearly see the covered screen rectangle.
float distanceFade = pcRay.lanternDebug != 0 ? 0.3 : max(0, (lantern.radius - lightDistance) / lantern.radius);
colorIntensity = color * lantern.brightness * distanceFade;
L = normalize(lDir);
}
// Non-lantern pass may have point light...
else if(pcRay.lightType == 0)
{
vec3 lDir = pcRay.lightPosition - worldPos;
lightDistance = length(lDir);
colorIntensity = vec3(pcRay.lightIntensity / (lightDistance * lightDistance));
L = normalize(lDir);
}
else // or directional light.
{
L = normalize(pcRay.lightPosition);
}
// Material of the object
int matIdx = matIndices.i[gl_PrimitiveID];
WaveFrontMaterial mat = materials.m[matIdx];
// Diffuse
vec3 diffuse = computeDiffuse(mat, L, worldNrm);
if(mat.textureId >= 0)
{
uint txtId = mat.textureId + objDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z;
diffuse *= texture(textureSamplers[nonuniformEXT(txtId)], texCoord).xyz;
}
vec3 specular = vec3(0);
float attenuation = 1;
// Tracing shadow ray only if the light is visible from the surface
if(dot(worldNrm, L) > 0)
{
float tMin = 0.001;
float tMax = lightDistance;
vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
vec3 rayDir = L;
// Ordinary shadow from the simple tutorial.
if(pcRay.lanternPassNumber < 0)
{
isShadowed = true;
uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT | gl_RayFlagsSkipClosestHitShaderEXT;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask
0, // sbtRecordOffset
0, // sbtRecordStride
1, // missIndex
origin, // ray origin
tMin, // ray min range
rayDir, // ray direction
tMax, // ray max range
1 // payload (location = 1)
);
}
// Lantern shadow ray. Cast a ray towards the lantern whose lighting is being
// added this pass. Only the closest hit shader for lanterns will set
// hitLanternInstance (payload 2) to non-negative value.
else
{
// Skip ray if no light would be added anyway.
if(colorIntensity == vec3(0))
{
isShadowed = true;
}
else
{
uint flags = gl_RayFlagsOpaqueEXT;
hitLanternInstance = -1;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask
2, // sbtRecordOffset : lantern shadow hit groups start at index 2.
0, // sbtRecordStride
2, // missIndex : lantern shadow miss shader is number 2.
origin, // ray origin
tMin, // ray min range
rayDir, // ray direction
tMax, // ray max range
2 // payload (location = 2)
);
// Did we hit the lantern we expected?
isShadowed = (hitLanternInstance != pcRay.lanternPassNumber);
}
}
if(isShadowed)
{
attenuation = 0.1;
}
else
{
// Specular
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, worldNrm);
}
}
prd.hitValue = colorIntensity * (attenuation * (diffuse + specular));
prd.additiveBlending = true;
}