bluenoise-raytracer/ray_tracing_indirect_scissor/hello_vulkan.h
Mathias Heyer 0c73e8ec1b Bulk update nvpro-samples 11/20/23
5c72ddfc0522eb6604828e74886cf39be646ba78
2023-11-20 13:54:44 -08:00

252 lines
10 KiB
C++

/*
* Copyright (c) 2014-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2014-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "nvvkhl/appbase_vk.hpp"
#include "nvvk/debug_util_vk.hpp"
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/memallocator_dma_vk.hpp"
#include "nvvk/resourceallocator_vk.hpp"
#include "shaders/host_device.h"
// #VKRay
#include "nvvk/raytraceKHR_vk.hpp"
//--------------------------------------------------------------------------------------------------
// Simple rasterizer of OBJ objects
// - Each OBJ loaded are stored in an `ObjModel` and referenced by a `ObjInstance`
// - It is possible to have many `ObjInstance` referencing the same `ObjModel`
// - Rendering is done in an offscreen framebuffer
// - The image of the framebuffer is displayed in post-process in a full-screen quad
//
class HelloVulkan : public nvvkhl::AppBaseVk
{
public:
void setup(const VkInstance& instance, const VkDevice& device, const VkPhysicalDevice& physicalDevice, uint32_t queueFamily) override;
void createDescriptorSetLayout();
void createGraphicsPipeline();
void loadModel(const std::string& filename, glm::mat4 transform = glm::mat4(1));
void addLantern(glm::vec3 pos, glm::vec3 color, float brightness, float radius);
void updateDescriptorSet();
void createUniformBuffer();
void createObjDescriptionBuffer();
void createTextureImages(const VkCommandBuffer& cmdBuf, const std::vector<std::string>& textures);
glm::mat4 getViewMatrix() { return CameraManip.getMatrix(); }
static constexpr float nearZ = 0.1f;
glm::mat4 getProjMatrix()
{
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
glm::mat4 proj = glm::perspectiveRH_ZO(glm::radians(CameraManip.getFov()), aspectRatio, nearZ, 1000.0f);
proj[1][1] *= -1;
return proj;
}
void updateUniformBuffer(const VkCommandBuffer& cmdBuf);
void onResize(int /*w*/, int /*h*/) override;
void destroyResources();
void rasterize(const VkCommandBuffer& cmdBuff);
// The OBJ model
struct ObjModel
{
uint32_t nbIndices{0};
uint32_t nbVertices{0};
nvvk::Buffer vertexBuffer; // Device buffer of all 'Vertex'
nvvk::Buffer indexBuffer; // Device buffer of the indices forming triangles
nvvk::Buffer matColorBuffer; // Device buffer of array of 'Wavefront material'
nvvk::Buffer matIndexBuffer; // Device buffer of array of 'Wavefront material'
};
struct ObjInstance
{
glm::mat4 transform; // Matrix of the instance
uint32_t objIndex{0}; // Model index reference
};
// Information pushed at each draw call
PushConstantRaster m_pcRaster{
{1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}, // Identity matrix
{10.f, 15.f, 8.f}, // light position
0, // instance Id
100.f, // light intensity
0 // light type
};
// Information on each colored lantern illuminating the scene.
struct Lantern
{
glm::vec3 position;
glm::vec3 color;
float brightness{0};
float radius{0}; // Max world-space distance that light illuminates.
};
// Information on each colored lantern, plus the info needed for dispatching the
// indirect ray trace command used to add its brightness effect.
// The dispatched ray trace covers pixels (offsetX, offsetY) to
// (offsetX + indirectCommand.width - 1, offsetY + indirectCommand.height - 1).
struct LanternIndirectEntry
{
// Filled in by the device using a compute shader.
// NOTE: I rely on indirectCommand being the first member.
VkTraceRaysIndirectCommandKHR indirectCommand{};
int32_t offsetX{0};
int32_t offsetY{0};
// Filled in by the host.
Lantern lantern{};
};
// Array of objects and instances in the scene. Not modifiable after acceleration structure build.
std::vector<ObjModel> m_objModel; // Model on host
std::vector<ObjDesc> m_objDesc; // Model description for device access
std::vector<ObjInstance> m_instances; // Scene model instances
// Array of lanterns in scene. Not modifiable after acceleration structure build.
std::vector<Lantern> m_lanterns;
// Graphic pipeline
VkPipelineLayout m_pipelineLayout;
VkPipeline m_graphicsPipeline;
nvvk::DescriptorSetBindings m_descSetLayoutBind;
VkDescriptorPool m_descPool;
VkDescriptorSetLayout m_descSetLayout;
VkDescriptorSet m_descSet;
nvvk::Buffer m_bGlobals; // Device-Host of the camera matrices
nvvk::Buffer m_bObjDesc; // Device buffer of the OBJ descriptions
std::vector<nvvk::Texture> m_textures; // vector of all textures of the scene
nvvk::ResourceAllocatorDma m_alloc; // Allocator for buffer, images, acceleration structures
nvvk::DebugUtil m_debug; // Utility to name objects
// #Post - Draw the rendered image on a quad using a tonemapper
void createOffscreenRender();
void createPostPipeline();
void createPostDescriptor();
void updatePostDescriptorSet();
void drawPost(VkCommandBuffer cmdBuf);
nvvk::DescriptorSetBindings m_postDescSetLayoutBind;
VkDescriptorPool m_postDescPool{VK_NULL_HANDLE};
VkDescriptorSetLayout m_postDescSetLayout{VK_NULL_HANDLE};
VkDescriptorSet m_postDescSet{VK_NULL_HANDLE};
VkPipeline m_postPipeline{VK_NULL_HANDLE};
VkPipelineLayout m_postPipelineLayout{VK_NULL_HANDLE};
VkRenderPass m_offscreenRenderPass{VK_NULL_HANDLE};
VkFramebuffer m_offscreenFramebuffer{VK_NULL_HANDLE};
nvvk::Texture m_offscreenColor;
nvvk::Texture m_offscreenDepth;
VkFormat m_offscreenColorFormat{VK_FORMAT_R32G32B32A32_SFLOAT};
VkFormat m_offscreenDepthFormat{VK_FORMAT_X8_D24_UNORM_PACK32};
// #VKRay
void initRayTracing();
auto objectToVkGeometryKHR(const ObjModel& model);
private:
void fillLanternVerts(std::vector<glm::vec3>& vertices, std::vector<uint32_t>& indices);
void createLanternModel();
public:
void createBottomLevelAS();
void createTopLevelAS();
void createRtDescriptorSet();
void updateRtDescriptorSet();
void createRtPipeline();
void createLanternIndirectDescriptorSet();
void createLanternIndirectCompPipeline();
void createRtShaderBindingTable();
void createLanternIndirectBuffer();
void raytrace(const VkCommandBuffer& cmdBuf, const glm::vec4& clearColor);
// Used to store lantern model, generated at runtime.
const float m_lanternModelRadius = 0.125;
nvvk::Buffer m_lanternVertexBuffer;
nvvk::Buffer m_lanternIndexBuffer;
nvvk::RaytracingBuilderKHR::BlasInput m_lanternBlasInput{};
// Index of lantern's BLAS in the BLAS array stored in m_rtBuilder.
size_t m_lanternBlasId;
VkPhysicalDeviceRayTracingPipelinePropertiesKHR m_rtProperties{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR};
nvvk::RaytracingBuilderKHR m_rtBuilder;
nvvk::DescriptorSetBindings m_rtDescSetLayoutBind;
VkDescriptorPool m_rtDescPool;
VkDescriptorSetLayout m_rtDescSetLayout;
VkDescriptorSet m_rtDescSet;
std::vector<VkRayTracingShaderGroupCreateInfoKHR> m_rtShaderGroups;
VkPipelineLayout m_rtPipelineLayout;
VkPipeline m_rtPipeline;
nvvk::DescriptorSetBindings m_lanternIndirectDescSetLayoutBind;
VkDescriptorPool m_lanternIndirectDescPool;
VkDescriptorSetLayout m_lanternIndirectDescSetLayout;
VkDescriptorSet m_lanternIndirectDescSet;
VkPipelineLayout m_lanternIndirectCompPipelineLayout;
VkPipeline m_lanternIndirectCompPipeline;
nvvk::Buffer m_rtSBTBuffer;
VkStridedDeviceAddressRegionKHR m_rgenRegion{};
VkStridedDeviceAddressRegionKHR m_missRegion{};
VkStridedDeviceAddressRegionKHR m_hitRegion{};
VkStridedDeviceAddressRegionKHR m_callRegion{};
// Buffer to source vkCmdTraceRaysIndirectKHR indirect parameters and lantern color,
// position, etc. from when doing lantern lighting passes.
nvvk::Buffer m_lanternIndirectBuffer;
VkDeviceSize m_lanternCount = 0; // Set to actual lantern count after TLAS build, as
// that is the point no more lanterns may be added.
// Push constant for ray tracer.
PushConstantRay m_pcRay{};
// Copied to RtPushConstant::lanternDebug. If true,
// make lantern produce constant light regardless of distance
// so that I can see the screen rectangle coverage.
bool m_lanternDebug = false;
// Push constant for compute shader filling lantern indirect buffer.
// Barely fits in 128-byte push constant limit guaranteed by spec.
struct LanternIndirectPushConstants
{
glm::vec4 viewRowX; // First 3 rows of view matrix.
glm::vec4 viewRowY; // Set w=1 implicitly in shader.
glm::vec4 viewRowZ;
glm::mat4 proj{}; // Perspective matrix
float nearZ{}; // Near plane used to create projection matrix.
// Pixel dimensions of output image (needed to scale NDC to screen coordinates).
int32_t screenX{};
int32_t screenY{};
// Length of the LanternIndirectEntry array.
int32_t lanternCount{};
} m_lanternIndirectPushConstants;
};