993 lines
41 KiB
C++
993 lines
41 KiB
C++
/*
|
|
* Copyright (c) 2014-2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2014-2021 NVIDIA CORPORATION
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
|
|
#include <sstream>
|
|
#include <vulkan/vulkan.hpp>
|
|
|
|
extern std::vector<std::string> defaultSearchPaths;
|
|
|
|
#define STB_IMAGE_IMPLEMENTATION
|
|
#include "obj_loader.h"
|
|
#include "stb_image.h"
|
|
|
|
#include "hello_vulkan.h"
|
|
#include "nvh/cameramanipulator.hpp"
|
|
#include "nvvk/descriptorsets_vk.hpp"
|
|
#include "nvvk/images_vk.hpp"
|
|
#include "nvvk/pipeline_vk.hpp"
|
|
|
|
#include "nvh/alignment.hpp"
|
|
#include "nvh/fileoperations.hpp"
|
|
#include "nvvk/commands_vk.hpp"
|
|
#include "nvvk/renderpasses_vk.hpp"
|
|
#include "nvvk/shaders_vk.hpp"
|
|
|
|
|
|
// Holding the camera matrices
|
|
struct CameraMatrices
|
|
{
|
|
nvmath::mat4f view;
|
|
nvmath::mat4f proj;
|
|
nvmath::mat4f viewInverse;
|
|
// #VKRay
|
|
nvmath::mat4f projInverse;
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Keep the handle on the device
|
|
// Initialize the tool to do all our allocations: buffers, images
|
|
//
|
|
void HelloVulkan::setup(const vk::Instance& instance,
|
|
const vk::Device& device,
|
|
const vk::PhysicalDevice& physicalDevice,
|
|
uint32_t queueFamily)
|
|
{
|
|
AppBase::setup(instance, device, physicalDevice, queueFamily);
|
|
m_alloc.init(instance, device, physicalDevice);
|
|
m_debug.setup(m_device);
|
|
m_offscreenDepthFormat = nvvk::findDepthFormat(physicalDevice);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Called at each frame to update the camera matrix
|
|
//
|
|
void HelloVulkan::updateUniformBuffer(const vk::CommandBuffer& cmdBuf)
|
|
{
|
|
// Prepare new UBO contents on host.
|
|
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
|
|
CameraMatrices hostUBO = {};
|
|
hostUBO.view = CameraManip.getMatrix();
|
|
hostUBO.proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
|
|
// hostUBO.proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
|
|
hostUBO.viewInverse = nvmath::invert(hostUBO.view);
|
|
// #VKRay
|
|
hostUBO.projInverse = nvmath::invert(hostUBO.proj);
|
|
|
|
// UBO on the device, and what stages access it.
|
|
vk::Buffer deviceUBO = m_cameraMat.buffer;
|
|
auto uboUsageStages =
|
|
vk::PipelineStageFlagBits::eVertexShader | vk::PipelineStageFlagBits::eRayTracingShaderKHR;
|
|
|
|
// Ensure that the modified UBO is not visible to previous frames.
|
|
vk::BufferMemoryBarrier beforeBarrier;
|
|
beforeBarrier.setSrcAccessMask(vk::AccessFlagBits::eShaderRead);
|
|
beforeBarrier.setDstAccessMask(vk::AccessFlagBits::eTransferWrite);
|
|
beforeBarrier.setBuffer(deviceUBO);
|
|
beforeBarrier.setOffset(0);
|
|
beforeBarrier.setSize(sizeof hostUBO);
|
|
cmdBuf.pipelineBarrier(uboUsageStages, vk::PipelineStageFlagBits::eTransfer,
|
|
vk::DependencyFlagBits::eDeviceGroup, {}, {beforeBarrier}, {});
|
|
|
|
// Schedule the host-to-device upload. (hostUBO is copied into the cmd
|
|
// buffer so it is okay to deallocate when the function returns).
|
|
cmdBuf.updateBuffer<CameraMatrices>(m_cameraMat.buffer, 0, hostUBO);
|
|
|
|
// Making sure the updated UBO will be visible.
|
|
vk::BufferMemoryBarrier afterBarrier;
|
|
afterBarrier.setSrcAccessMask(vk::AccessFlagBits::eTransferWrite);
|
|
afterBarrier.setDstAccessMask(vk::AccessFlagBits::eShaderRead);
|
|
afterBarrier.setBuffer(deviceUBO);
|
|
afterBarrier.setOffset(0);
|
|
afterBarrier.setSize(sizeof hostUBO);
|
|
cmdBuf.pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, uboUsageStages,
|
|
vk::DependencyFlagBits::eDeviceGroup, {}, {afterBarrier}, {});
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Describing the layout pushed when rendering
|
|
//
|
|
void HelloVulkan::createDescriptorSetLayout()
|
|
{
|
|
using vkDS = vk::DescriptorSetLayoutBinding;
|
|
using vkDT = vk::DescriptorType;
|
|
using vkSS = vk::ShaderStageFlagBits;
|
|
auto nbTxt = static_cast<uint32_t>(m_textures.size());
|
|
auto nbObj = static_cast<uint32_t>(m_objModel.size());
|
|
|
|
// Camera matrices (binding = 0)
|
|
m_descSetLayoutBind.addBinding(
|
|
vkDS(0, vkDT::eUniformBuffer, 1, vkSS::eVertex | vkSS::eRaygenKHR));
|
|
// Materials (binding = 1)
|
|
m_descSetLayoutBind.addBinding(
|
|
vkDS(1, vkDT::eStorageBuffer, nbObj, vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR));
|
|
// Scene description (binding = 2)
|
|
m_descSetLayoutBind.addBinding( //
|
|
vkDS(2, vkDT::eStorageBuffer, 1, vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR));
|
|
// Textures (binding = 3)
|
|
m_descSetLayoutBind.addBinding(
|
|
vkDS(3, vkDT::eCombinedImageSampler, nbTxt, vkSS::eFragment | vkSS::eClosestHitKHR));
|
|
// Materials (binding = 4)
|
|
m_descSetLayoutBind.addBinding(
|
|
vkDS(4, vkDT::eStorageBuffer, nbObj, vkSS::eFragment | vkSS::eClosestHitKHR));
|
|
// Storing vertices (binding = 5)
|
|
m_descSetLayoutBind.addBinding( //
|
|
vkDS(5, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR));
|
|
// Storing indices (binding = 6)
|
|
m_descSetLayoutBind.addBinding( //
|
|
vkDS(6, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR));
|
|
|
|
|
|
m_descSetLayout = m_descSetLayoutBind.createLayout(m_device);
|
|
m_descPool = m_descSetLayoutBind.createPool(m_device, 1);
|
|
m_descSet = nvvk::allocateDescriptorSet(m_device, m_descPool, m_descSetLayout);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Setting up the buffers in the descriptor set
|
|
//
|
|
void HelloVulkan::updateDescriptorSet()
|
|
{
|
|
std::vector<vk::WriteDescriptorSet> writes;
|
|
|
|
// Camera matrices and scene description
|
|
vk::DescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
|
|
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 0, &dbiUnif));
|
|
vk::DescriptorBufferInfo dbiSceneDesc{m_sceneDesc.buffer, 0, VK_WHOLE_SIZE};
|
|
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 2, &dbiSceneDesc));
|
|
|
|
// All material buffers, 1 buffer per OBJ
|
|
std::vector<vk::DescriptorBufferInfo> dbiMat;
|
|
std::vector<vk::DescriptorBufferInfo> dbiMatIdx;
|
|
std::vector<vk::DescriptorBufferInfo> dbiVert;
|
|
std::vector<vk::DescriptorBufferInfo> dbiIdx;
|
|
for(auto& obj : m_objModel)
|
|
{
|
|
dbiMat.emplace_back(obj.matColorBuffer.buffer, 0, VK_WHOLE_SIZE);
|
|
dbiMatIdx.emplace_back(obj.matIndexBuffer.buffer, 0, VK_WHOLE_SIZE);
|
|
dbiVert.emplace_back(obj.vertexBuffer.buffer, 0, VK_WHOLE_SIZE);
|
|
dbiIdx.emplace_back(obj.indexBuffer.buffer, 0, VK_WHOLE_SIZE);
|
|
}
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 1, dbiMat.data()));
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 4, dbiMatIdx.data()));
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 5, dbiVert.data()));
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 6, dbiIdx.data()));
|
|
|
|
// All texture samplers
|
|
std::vector<vk::DescriptorImageInfo> diit;
|
|
for(auto& texture : m_textures)
|
|
{
|
|
diit.emplace_back(texture.descriptor);
|
|
}
|
|
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 3, diit.data()));
|
|
|
|
// Writing the information
|
|
m_device.updateDescriptorSets(static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Creating the pipeline layout
|
|
//
|
|
void HelloVulkan::createGraphicsPipeline()
|
|
{
|
|
using vkSS = vk::ShaderStageFlagBits;
|
|
|
|
vk::PushConstantRange pushConstantRanges = {vkSS::eVertex | vkSS::eFragment, 0,
|
|
sizeof(ObjPushConstant)};
|
|
|
|
// Creating the Pipeline Layout
|
|
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
|
|
vk::DescriptorSetLayout descSetLayout(m_descSetLayout);
|
|
pipelineLayoutCreateInfo.setSetLayoutCount(1);
|
|
pipelineLayoutCreateInfo.setPSetLayouts(&descSetLayout);
|
|
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
|
|
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstantRanges);
|
|
m_pipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
|
|
|
|
// Creating the Pipeline
|
|
std::vector<std::string> paths = defaultSearchPaths;
|
|
nvvk::GraphicsPipelineGeneratorCombined gpb(m_device, m_pipelineLayout, m_offscreenRenderPass);
|
|
gpb.depthStencilState.depthTestEnable = true;
|
|
gpb.addShader(nvh::loadFile("spv/vert_shader.vert.spv", true, paths, true), vkSS::eVertex);
|
|
gpb.addShader(nvh::loadFile("spv/frag_shader.frag.spv", true, paths, true), vkSS::eFragment);
|
|
gpb.addBindingDescription({0, sizeof(VertexObj)});
|
|
gpb.addAttributeDescriptions({
|
|
{0, 0, vk::Format::eR32G32B32Sfloat, static_cast<uint32_t>(offsetof(VertexObj, pos))},
|
|
{1, 0, vk::Format::eR32G32B32Sfloat, static_cast<uint32_t>(offsetof(VertexObj, nrm))},
|
|
{2, 0, vk::Format::eR32G32B32Sfloat, static_cast<uint32_t>(offsetof(VertexObj, color))},
|
|
{3, 0, vk::Format::eR32G32Sfloat, static_cast<uint32_t>(offsetof(VertexObj, texCoord))},
|
|
});
|
|
|
|
m_graphicsPipeline = gpb.createPipeline();
|
|
m_debug.setObjectName(m_graphicsPipeline, "Graphics");
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Loading the OBJ file and setting up all buffers
|
|
//
|
|
void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform)
|
|
{
|
|
using vkBU = vk::BufferUsageFlagBits;
|
|
|
|
LOGI("Loading File: %s \n", filename.c_str());
|
|
ObjLoader loader;
|
|
loader.loadModel(filename);
|
|
|
|
// Converting from Srgb to linear
|
|
for(auto& m : loader.m_materials)
|
|
{
|
|
m.ambient = nvmath::pow(m.ambient, 2.2f);
|
|
m.diffuse = nvmath::pow(m.diffuse, 2.2f);
|
|
m.specular = nvmath::pow(m.specular, 2.2f);
|
|
}
|
|
|
|
ObjInstance instance;
|
|
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
|
|
instance.transform = transform;
|
|
instance.transformIT = nvmath::transpose(nvmath::invert(transform));
|
|
instance.txtOffset = static_cast<uint32_t>(m_textures.size());
|
|
|
|
ObjModel model;
|
|
model.nbIndices = static_cast<uint32_t>(loader.m_indices.size());
|
|
model.nbVertices = static_cast<uint32_t>(loader.m_vertices.size());
|
|
|
|
// Create the buffers on Device and copy vertices, indices and materials
|
|
nvvk::CommandPool cmdBufGet(m_device, m_graphicsQueueIndex);
|
|
vk::CommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
|
|
model.vertexBuffer =
|
|
m_alloc.createBuffer(cmdBuf, loader.m_vertices,
|
|
vkBU::eVertexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress
|
|
| vkBU::eAccelerationStructureBuildInputReadOnlyKHR);
|
|
model.indexBuffer =
|
|
m_alloc.createBuffer(cmdBuf, loader.m_indices,
|
|
vkBU::eIndexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress
|
|
| vkBU::eAccelerationStructureBuildInputReadOnlyKHR);
|
|
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, vkBU::eStorageBuffer);
|
|
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, vkBU::eStorageBuffer);
|
|
// Creates all textures found
|
|
createTextureImages(cmdBuf, loader.m_textures);
|
|
cmdBufGet.submitAndWait(cmdBuf);
|
|
m_alloc.finalizeAndReleaseStaging();
|
|
|
|
std::string objNb = std::to_string(instance.objIndex);
|
|
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb).c_str()));
|
|
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb).c_str()));
|
|
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb).c_str()));
|
|
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb).c_str()));
|
|
|
|
m_objModel.emplace_back(model);
|
|
m_objInstance.emplace_back(instance);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Creating the uniform buffer holding the camera matrices
|
|
// - Buffer is host visible
|
|
//
|
|
void HelloVulkan::createUniformBuffer()
|
|
{
|
|
using vkBU = vk::BufferUsageFlagBits;
|
|
using vkMP = vk::MemoryPropertyFlagBits;
|
|
|
|
m_cameraMat = m_alloc.createBuffer(sizeof(CameraMatrices),
|
|
vkBU::eUniformBuffer | vkBU::eTransferDst, vkMP::eDeviceLocal);
|
|
m_debug.setObjectName(m_cameraMat.buffer, "cameraMat");
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Create a storage buffer containing the description of the scene elements
|
|
// - Which geometry is used by which instance
|
|
// - Transformation
|
|
// - Offset for texture
|
|
//
|
|
void HelloVulkan::createSceneDescriptionBuffer()
|
|
{
|
|
using vkBU = vk::BufferUsageFlagBits;
|
|
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
|
|
|
|
auto cmdBuf = cmdGen.createCommandBuffer();
|
|
m_sceneDesc = m_alloc.createBuffer(cmdBuf, m_objInstance, vkBU::eStorageBuffer);
|
|
cmdGen.submitAndWait(cmdBuf);
|
|
m_alloc.finalizeAndReleaseStaging();
|
|
m_debug.setObjectName(m_sceneDesc.buffer, "sceneDesc");
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Creating all textures and samplers
|
|
//
|
|
void HelloVulkan::createTextureImages(const vk::CommandBuffer& cmdBuf,
|
|
const std::vector<std::string>& textures)
|
|
{
|
|
using vkIU = vk::ImageUsageFlagBits;
|
|
|
|
vk::SamplerCreateInfo samplerCreateInfo{
|
|
{}, vk::Filter::eLinear, vk::Filter::eLinear, vk::SamplerMipmapMode::eLinear};
|
|
samplerCreateInfo.setMaxLod(FLT_MAX);
|
|
vk::Format format = vk::Format::eR8G8B8A8Srgb;
|
|
|
|
// If no textures are present, create a dummy one to accommodate the pipeline layout
|
|
if(textures.empty() && m_textures.empty())
|
|
{
|
|
nvvk::Texture texture;
|
|
|
|
std::array<uint8_t, 4> color{255u, 255u, 255u, 255u};
|
|
vk::DeviceSize bufferSize = sizeof(color);
|
|
auto imgSize = vk::Extent2D(1, 1);
|
|
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format);
|
|
|
|
// Creating the dummy texture
|
|
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, color.data(), imageCreateInfo);
|
|
vk::ImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
|
|
texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
|
|
|
|
// The image format must be in VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
|
|
nvvk::cmdBarrierImageLayout(cmdBuf, texture.image, vk::ImageLayout::eUndefined,
|
|
vk::ImageLayout::eShaderReadOnlyOptimal);
|
|
m_textures.push_back(texture);
|
|
}
|
|
else
|
|
{
|
|
// Uploading all images
|
|
for(const auto& texture : textures)
|
|
{
|
|
std::stringstream o;
|
|
int texWidth, texHeight, texChannels;
|
|
o << "media/textures/" << texture;
|
|
std::string txtFile = nvh::findFile(o.str(), defaultSearchPaths, true);
|
|
|
|
stbi_uc* stbi_pixels =
|
|
stbi_load(txtFile.c_str(), &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
|
|
|
|
std::array<stbi_uc, 4> color{255u, 0u, 255u, 255u};
|
|
|
|
stbi_uc* pixels = stbi_pixels;
|
|
// Handle failure
|
|
if(!stbi_pixels)
|
|
{
|
|
texWidth = texHeight = 1;
|
|
texChannels = 4;
|
|
pixels = reinterpret_cast<stbi_uc*>(color.data());
|
|
}
|
|
|
|
vk::DeviceSize bufferSize = static_cast<uint64_t>(texWidth) * texHeight * sizeof(uint8_t) * 4;
|
|
auto imgSize = vk::Extent2D(texWidth, texHeight);
|
|
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format, vkIU::eSampled, true);
|
|
|
|
{
|
|
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, pixels, imageCreateInfo);
|
|
nvvk::cmdGenerateMipmaps(cmdBuf, image.image, format, imgSize, imageCreateInfo.mipLevels);
|
|
vk::ImageViewCreateInfo ivInfo =
|
|
nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
|
|
nvvk::Texture texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
|
|
|
|
m_textures.push_back(texture);
|
|
}
|
|
|
|
stbi_image_free(stbi_pixels);
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Destroying all allocations
|
|
//
|
|
void HelloVulkan::destroyResources()
|
|
{
|
|
m_device.destroy(m_graphicsPipeline);
|
|
m_device.destroy(m_pipelineLayout);
|
|
m_device.destroy(m_descPool);
|
|
m_device.destroy(m_descSetLayout);
|
|
m_alloc.destroy(m_cameraMat);
|
|
m_alloc.destroy(m_sceneDesc);
|
|
|
|
for(auto& m : m_objModel)
|
|
{
|
|
m_alloc.destroy(m.vertexBuffer);
|
|
m_alloc.destroy(m.indexBuffer);
|
|
m_alloc.destroy(m.matColorBuffer);
|
|
m_alloc.destroy(m.matIndexBuffer);
|
|
}
|
|
|
|
for(auto& t : m_textures)
|
|
{
|
|
m_alloc.destroy(t);
|
|
}
|
|
|
|
//#Post
|
|
m_device.destroy(m_postPipeline);
|
|
m_device.destroy(m_postPipelineLayout);
|
|
m_device.destroy(m_postDescPool);
|
|
m_device.destroy(m_postDescSetLayout);
|
|
m_alloc.destroy(m_offscreenColor);
|
|
m_alloc.destroy(m_offscreenDepth);
|
|
m_device.destroy(m_offscreenRenderPass);
|
|
m_device.destroy(m_offscreenFramebuffer);
|
|
|
|
// #VKRay
|
|
m_rtBuilder.destroy();
|
|
m_sbtWrapper.destroy();
|
|
m_device.destroy(m_rtDescPool);
|
|
m_device.destroy(m_rtDescSetLayout);
|
|
m_device.destroy(m_rtPipeline);
|
|
m_device.destroy(m_rtPipelineLayout);
|
|
|
|
// #VK_compute
|
|
m_device.destroy(m_compDescPool);
|
|
m_device.destroy(m_compDescSetLayout);
|
|
m_device.destroy(m_compPipeline);
|
|
m_device.destroy(m_compPipelineLayout);
|
|
|
|
m_alloc.deinit();
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Drawing the scene in raster mode
|
|
//
|
|
void HelloVulkan::rasterize(const vk::CommandBuffer& cmdBuf)
|
|
{
|
|
using vkPBP = vk::PipelineBindPoint;
|
|
using vkSS = vk::ShaderStageFlagBits;
|
|
vk::DeviceSize offset{0};
|
|
|
|
m_debug.beginLabel(cmdBuf, "Rasterize");
|
|
|
|
// Dynamic Viewport
|
|
cmdBuf.setViewport(0, {vk::Viewport(0, 0, (float)m_size.width, (float)m_size.height, 0, 1)});
|
|
cmdBuf.setScissor(0, {{{0, 0}, {m_size.width, m_size.height}}});
|
|
|
|
// Drawing all triangles
|
|
cmdBuf.bindPipeline(vkPBP::eGraphics, m_graphicsPipeline);
|
|
cmdBuf.bindDescriptorSets(vkPBP::eGraphics, m_pipelineLayout, 0, {m_descSet}, {});
|
|
for(int i = 0; i < m_objInstance.size(); ++i)
|
|
{
|
|
auto& inst = m_objInstance[i];
|
|
auto& model = m_objModel[inst.objIndex];
|
|
m_pushConstant.instanceId = i; // Telling which instance is drawn
|
|
cmdBuf.pushConstants<ObjPushConstant>(m_pipelineLayout, vkSS::eVertex | vkSS::eFragment, 0,
|
|
m_pushConstant);
|
|
|
|
cmdBuf.bindVertexBuffers(0, {model.vertexBuffer.buffer}, {offset});
|
|
cmdBuf.bindIndexBuffer(model.indexBuffer.buffer, 0, vk::IndexType::eUint32);
|
|
cmdBuf.drawIndexed(model.nbIndices, 1, 0, 0, 0);
|
|
}
|
|
m_debug.endLabel(cmdBuf);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Handling resize of the window
|
|
//
|
|
void HelloVulkan::onResize(int /*w*/, int /*h*/)
|
|
{
|
|
createOffscreenRender();
|
|
updatePostDescriptorSet();
|
|
updateRtDescriptorSet();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Post-processing
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Creating an offscreen frame buffer and the associated render pass
|
|
//
|
|
void HelloVulkan::createOffscreenRender()
|
|
{
|
|
m_alloc.destroy(m_offscreenColor);
|
|
m_alloc.destroy(m_offscreenDepth);
|
|
|
|
// Creating the color image
|
|
{
|
|
auto colorCreateInfo = nvvk::makeImage2DCreateInfo(m_size, m_offscreenColorFormat,
|
|
vk::ImageUsageFlagBits::eColorAttachment
|
|
| vk::ImageUsageFlagBits::eSampled
|
|
| vk::ImageUsageFlagBits::eStorage);
|
|
|
|
|
|
nvvk::Image image = m_alloc.createImage(colorCreateInfo);
|
|
vk::ImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, colorCreateInfo);
|
|
m_offscreenColor = m_alloc.createTexture(image, ivInfo, vk::SamplerCreateInfo());
|
|
m_offscreenColor.descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
|
|
}
|
|
|
|
// Creating the depth buffer
|
|
auto depthCreateInfo =
|
|
nvvk::makeImage2DCreateInfo(m_size, m_offscreenDepthFormat,
|
|
vk::ImageUsageFlagBits::eDepthStencilAttachment);
|
|
{
|
|
nvvk::Image image = m_alloc.createImage(depthCreateInfo);
|
|
|
|
vk::ImageViewCreateInfo depthStencilView;
|
|
depthStencilView.setViewType(vk::ImageViewType::e2D);
|
|
depthStencilView.setFormat(m_offscreenDepthFormat);
|
|
depthStencilView.setSubresourceRange({vk::ImageAspectFlagBits::eDepth, 0, 1, 0, 1});
|
|
depthStencilView.setImage(image.image);
|
|
|
|
m_offscreenDepth = m_alloc.createTexture(image, depthStencilView);
|
|
}
|
|
|
|
// Setting the image layout for both color and depth
|
|
{
|
|
nvvk::CommandPool genCmdBuf(m_device, m_graphicsQueueIndex);
|
|
auto cmdBuf = genCmdBuf.createCommandBuffer();
|
|
nvvk::cmdBarrierImageLayout(cmdBuf, m_offscreenColor.image, vk::ImageLayout::eUndefined,
|
|
vk::ImageLayout::eGeneral);
|
|
nvvk::cmdBarrierImageLayout(cmdBuf, m_offscreenDepth.image, vk::ImageLayout::eUndefined,
|
|
vk::ImageLayout::eDepthStencilAttachmentOptimal,
|
|
vk::ImageAspectFlagBits::eDepth);
|
|
|
|
genCmdBuf.submitAndWait(cmdBuf);
|
|
}
|
|
|
|
// Creating a renderpass for the offscreen
|
|
if(!m_offscreenRenderPass)
|
|
{
|
|
m_offscreenRenderPass =
|
|
nvvk::createRenderPass(m_device, {m_offscreenColorFormat}, m_offscreenDepthFormat, 1, true,
|
|
true, vk::ImageLayout::eGeneral, vk::ImageLayout::eGeneral);
|
|
}
|
|
|
|
// Creating the frame buffer for offscreen
|
|
std::vector<vk::ImageView> attachments = {m_offscreenColor.descriptor.imageView,
|
|
m_offscreenDepth.descriptor.imageView};
|
|
|
|
m_device.destroy(m_offscreenFramebuffer);
|
|
vk::FramebufferCreateInfo info;
|
|
info.setRenderPass(m_offscreenRenderPass);
|
|
info.setAttachmentCount(2);
|
|
info.setPAttachments(attachments.data());
|
|
info.setWidth(m_size.width);
|
|
info.setHeight(m_size.height);
|
|
info.setLayers(1);
|
|
m_offscreenFramebuffer = m_device.createFramebuffer(info);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// The pipeline is how things are rendered, which shaders, type of primitives, depth test and more
|
|
//
|
|
void HelloVulkan::createPostPipeline()
|
|
{
|
|
// Push constants in the fragment shader
|
|
vk::PushConstantRange pushConstantRanges = {vk::ShaderStageFlagBits::eFragment, 0, sizeof(float)};
|
|
|
|
// Creating the pipeline layout
|
|
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
|
|
pipelineLayoutCreateInfo.setSetLayoutCount(1);
|
|
pipelineLayoutCreateInfo.setPSetLayouts(&m_postDescSetLayout);
|
|
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
|
|
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstantRanges);
|
|
m_postPipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
|
|
|
|
// Pipeline: completely generic, no vertices
|
|
nvvk::GraphicsPipelineGeneratorCombined pipelineGenerator(m_device, m_postPipelineLayout,
|
|
m_renderPass);
|
|
pipelineGenerator.addShader(nvh::loadFile("spv/passthrough.vert.spv", true, defaultSearchPaths,
|
|
true),
|
|
vk::ShaderStageFlagBits::eVertex);
|
|
pipelineGenerator.addShader(nvh::loadFile("spv/post.frag.spv", true, defaultSearchPaths, true),
|
|
vk::ShaderStageFlagBits::eFragment);
|
|
pipelineGenerator.rasterizationState.setCullMode(vk::CullModeFlagBits::eNone);
|
|
m_postPipeline = pipelineGenerator.createPipeline();
|
|
m_debug.setObjectName(m_postPipeline, "post");
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// The descriptor layout is the description of the data that is passed to the vertex or the
|
|
// fragment program.
|
|
//
|
|
void HelloVulkan::createPostDescriptor()
|
|
{
|
|
using vkDS = vk::DescriptorSetLayoutBinding;
|
|
using vkDT = vk::DescriptorType;
|
|
using vkSS = vk::ShaderStageFlagBits;
|
|
|
|
m_postDescSetLayoutBind.addBinding(vkDS(0, vkDT::eCombinedImageSampler, 1, vkSS::eFragment));
|
|
m_postDescSetLayout = m_postDescSetLayoutBind.createLayout(m_device);
|
|
m_postDescPool = m_postDescSetLayoutBind.createPool(m_device);
|
|
m_postDescSet = nvvk::allocateDescriptorSet(m_device, m_postDescPool, m_postDescSetLayout);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Update the output
|
|
//
|
|
void HelloVulkan::updatePostDescriptorSet()
|
|
{
|
|
vk::WriteDescriptorSet writeDescriptorSets =
|
|
m_postDescSetLayoutBind.makeWrite(m_postDescSet, 0, &m_offscreenColor.descriptor);
|
|
m_device.updateDescriptorSets(writeDescriptorSets, nullptr);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Draw a full screen quad with the attached image
|
|
//
|
|
void HelloVulkan::drawPost(vk::CommandBuffer cmdBuf)
|
|
{
|
|
m_debug.beginLabel(cmdBuf, "Post");
|
|
|
|
cmdBuf.setViewport(0, {vk::Viewport(0, 0, (float)m_size.width, (float)m_size.height, 0, 1)});
|
|
cmdBuf.setScissor(0, {{{0, 0}, {m_size.width, m_size.height}}});
|
|
|
|
auto aspectRatio = static_cast<float>(m_size.width) / static_cast<float>(m_size.height);
|
|
cmdBuf.pushConstants<float>(m_postPipelineLayout, vk::ShaderStageFlagBits::eFragment, 0,
|
|
aspectRatio);
|
|
cmdBuf.bindPipeline(vk::PipelineBindPoint::eGraphics, m_postPipeline);
|
|
cmdBuf.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, m_postPipelineLayout, 0,
|
|
m_postDescSet, {});
|
|
cmdBuf.draw(3, 1, 0, 0);
|
|
|
|
m_debug.endLabel(cmdBuf);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Initialize Vulkan ray tracing
|
|
// #VKRay
|
|
void HelloVulkan::initRayTracing()
|
|
{
|
|
// Requesting ray tracing properties
|
|
auto properties =
|
|
m_physicalDevice.getProperties2<vk::PhysicalDeviceProperties2,
|
|
vk::PhysicalDeviceRayTracingPipelinePropertiesKHR>();
|
|
m_rtProperties = properties.get<vk::PhysicalDeviceRayTracingPipelinePropertiesKHR>();
|
|
m_rtBuilder.setup(m_device, &m_alloc, m_graphicsQueueIndex);
|
|
m_sbtWrapper.setup(m_device, m_graphicsQueueIndex, &m_alloc, m_rtProperties);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Converting a OBJ primitive to the ray tracing geometry used for the BLAS
|
|
//
|
|
auto HelloVulkan::objectToVkGeometryKHR(const ObjModel& model)
|
|
{
|
|
vk::DeviceAddress vertexAddress = m_device.getBufferAddress({model.vertexBuffer.buffer});
|
|
vk::DeviceAddress indexAddress = m_device.getBufferAddress({model.indexBuffer.buffer});
|
|
|
|
vk::AccelerationStructureGeometryTrianglesDataKHR triangles;
|
|
triangles.setVertexFormat(vk::Format::eR32G32B32Sfloat);
|
|
triangles.setVertexData(vertexAddress);
|
|
triangles.setVertexStride(sizeof(VertexObj));
|
|
triangles.setIndexType(vk::IndexType::eUint32);
|
|
triangles.setIndexData(indexAddress);
|
|
triangles.setTransformData({});
|
|
triangles.setMaxVertex(model.nbVertices);
|
|
|
|
vk::AccelerationStructureGeometryKHR asGeom;
|
|
asGeom.setGeometryType(vk::GeometryTypeKHR::eTriangles);
|
|
asGeom.setFlags(vk::GeometryFlagBitsKHR::eOpaque);
|
|
asGeom.geometry.setTriangles(triangles);
|
|
|
|
vk::AccelerationStructureBuildRangeInfoKHR offset;
|
|
offset.setFirstVertex(0);
|
|
offset.setPrimitiveCount(model.nbIndices / 3); // Nb triangles
|
|
offset.setPrimitiveOffset(0);
|
|
offset.setTransformOffset(0);
|
|
|
|
nvvk::RaytracingBuilderKHR::BlasInput input;
|
|
input.asGeometry.emplace_back(asGeom);
|
|
input.asBuildOffsetInfo.emplace_back(offset);
|
|
return input;
|
|
}
|
|
|
|
void HelloVulkan::createBottomLevelAS()
|
|
{
|
|
// BLAS - Storing each primitive in a geometry
|
|
m_blas.reserve(m_objModel.size());
|
|
for(const auto& obj : m_objModel)
|
|
{
|
|
auto blas = objectToVkGeometryKHR(obj);
|
|
|
|
// We could add more geometry in each BLAS, but we add only one for now
|
|
m_blas.push_back(blas);
|
|
}
|
|
m_rtBuilder.buildBlas(m_blas, vk::BuildAccelerationStructureFlagBitsKHR::eAllowUpdate
|
|
| vk::BuildAccelerationStructureFlagBitsKHR::ePreferFastBuild);
|
|
}
|
|
|
|
void HelloVulkan::createTopLevelAS()
|
|
{
|
|
m_tlas.reserve(m_objInstance.size());
|
|
for(uint32_t i = 0; i < static_cast<uint32_t>(m_objInstance.size()); i++)
|
|
{
|
|
nvvk::RaytracingBuilderKHR::Instance rayInst;
|
|
rayInst.transform = m_objInstance[i].transform; // Position of the instance
|
|
rayInst.instanceCustomId = i; // gl_InstanceCustomIndexEXT
|
|
rayInst.blasId = m_objInstance[i].objIndex;
|
|
rayInst.hitGroupId = 0;
|
|
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
|
|
m_tlas.emplace_back(rayInst);
|
|
}
|
|
|
|
m_rtFlags = vk::BuildAccelerationStructureFlagBitsKHR::ePreferFastTrace
|
|
| vk::BuildAccelerationStructureFlagBitsKHR::eAllowUpdate;
|
|
m_rtBuilder.buildTlas(m_tlas, m_rtFlags);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// This descriptor set holds the Acceleration structure and the output image
|
|
//
|
|
void HelloVulkan::createRtDescriptorSet()
|
|
{
|
|
using vkDT = vk::DescriptorType;
|
|
using vkSS = vk::ShaderStageFlagBits;
|
|
using vkDSLB = vk::DescriptorSetLayoutBinding;
|
|
|
|
m_rtDescSetLayoutBind.addBinding(vkDSLB(0, vkDT::eAccelerationStructureKHR, 1,
|
|
vkSS::eRaygenKHR | vkSS::eClosestHitKHR)); // TLAS
|
|
m_rtDescSetLayoutBind.addBinding(
|
|
vkDSLB(1, vkDT::eStorageImage, 1, vkSS::eRaygenKHR)); // Output image
|
|
|
|
m_rtDescPool = m_rtDescSetLayoutBind.createPool(m_device);
|
|
m_rtDescSetLayout = m_rtDescSetLayoutBind.createLayout(m_device);
|
|
m_rtDescSet = m_device.allocateDescriptorSets({m_rtDescPool, 1, &m_rtDescSetLayout})[0];
|
|
|
|
vk::AccelerationStructureKHR tlas = m_rtBuilder.getAccelerationStructure();
|
|
vk::WriteDescriptorSetAccelerationStructureKHR descASInfo;
|
|
descASInfo.setAccelerationStructureCount(1);
|
|
descASInfo.setPAccelerationStructures(&tlas);
|
|
vk::DescriptorImageInfo imageInfo{
|
|
{}, m_offscreenColor.descriptor.imageView, vk::ImageLayout::eGeneral};
|
|
|
|
std::vector<vk::WriteDescriptorSet> writes;
|
|
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 0, &descASInfo));
|
|
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, 1, &imageInfo));
|
|
m_device.updateDescriptorSets(static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Writes the output image to the descriptor set
|
|
// - Required when changing resolution
|
|
//
|
|
void HelloVulkan::updateRtDescriptorSet()
|
|
{
|
|
using vkDT = vk::DescriptorType;
|
|
|
|
// (1) Output buffer
|
|
vk::DescriptorImageInfo imageInfo{
|
|
{}, m_offscreenColor.descriptor.imageView, vk::ImageLayout::eGeneral};
|
|
vk::WriteDescriptorSet wds{m_rtDescSet, 1, 0, 1, vkDT::eStorageImage, &imageInfo};
|
|
m_device.updateDescriptorSets(wds, nullptr);
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Pipeline for the ray tracer: all shaders, raygen, chit, miss
|
|
//
|
|
void HelloVulkan::createRtPipeline()
|
|
{
|
|
vk::ShaderModule raygenSM = nvvk::createShaderModule(
|
|
m_device, nvh::loadFile("spv/raytrace.rgen.spv", true, defaultSearchPaths, true));
|
|
vk::ShaderModule missSM = nvvk::createShaderModule(
|
|
m_device, nvh::loadFile("spv/raytrace.rmiss.spv", true, defaultSearchPaths, true));
|
|
|
|
// The second miss shader is invoked when a shadow ray misses the geometry. It
|
|
// simply indicates that no occlusion has been found
|
|
vk::ShaderModule shadowmissSM = nvvk::createShaderModule(
|
|
m_device, nvh::loadFile("spv/raytraceShadow.rmiss.spv", true, defaultSearchPaths, true));
|
|
|
|
|
|
std::vector<vk::PipelineShaderStageCreateInfo> stages;
|
|
|
|
// Raygen
|
|
vk::RayTracingShaderGroupCreateInfoKHR rg{vk::RayTracingShaderGroupTypeKHR::eGeneral,
|
|
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
|
|
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
|
|
rg.setGeneralShader(static_cast<uint32_t>(stages.size()));
|
|
stages.push_back({{}, vk::ShaderStageFlagBits::eRaygenKHR, raygenSM, "main"});
|
|
m_rtShaderGroups.push_back(rg);
|
|
// Miss
|
|
vk::RayTracingShaderGroupCreateInfoKHR mg{vk::RayTracingShaderGroupTypeKHR::eGeneral,
|
|
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
|
|
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
|
|
mg.setGeneralShader(static_cast<uint32_t>(stages.size()));
|
|
stages.push_back({{}, vk::ShaderStageFlagBits::eMissKHR, missSM, "main"});
|
|
m_rtShaderGroups.push_back(mg);
|
|
// Shadow Miss
|
|
mg.setGeneralShader(static_cast<uint32_t>(stages.size()));
|
|
stages.push_back({{}, vk::ShaderStageFlagBits::eMissKHR, shadowmissSM, "main"});
|
|
m_rtShaderGroups.push_back(mg);
|
|
|
|
// Hit Group - Closest Hit + AnyHit
|
|
vk::ShaderModule chitSM = nvvk::createShaderModule(
|
|
m_device, nvh::loadFile("spv/raytrace.rchit.spv", true, defaultSearchPaths, true));
|
|
|
|
vk::RayTracingShaderGroupCreateInfoKHR hg{vk::RayTracingShaderGroupTypeKHR::eTrianglesHitGroup,
|
|
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
|
|
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
|
|
hg.setClosestHitShader(static_cast<uint32_t>(stages.size()));
|
|
stages.push_back({{}, vk::ShaderStageFlagBits::eClosestHitKHR, chitSM, "main"});
|
|
m_rtShaderGroups.push_back(hg);
|
|
|
|
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
|
|
|
|
// Push constant: we want to be able to update constants used by the shaders
|
|
vk::PushConstantRange pushConstant{vk::ShaderStageFlagBits::eRaygenKHR
|
|
| vk::ShaderStageFlagBits::eClosestHitKHR
|
|
| vk::ShaderStageFlagBits::eMissKHR,
|
|
0, sizeof(RtPushConstant)};
|
|
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
|
|
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstant);
|
|
|
|
// Descriptor sets: one specific to ray tracing, and one shared with the rasterization pipeline
|
|
std::vector<vk::DescriptorSetLayout> rtDescSetLayouts = {m_rtDescSetLayout, m_descSetLayout};
|
|
pipelineLayoutCreateInfo.setSetLayoutCount(static_cast<uint32_t>(rtDescSetLayouts.size()));
|
|
pipelineLayoutCreateInfo.setPSetLayouts(rtDescSetLayouts.data());
|
|
|
|
m_rtPipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
|
|
|
|
// Assemble the shader stages and recursion depth info into the ray tracing pipeline
|
|
vk::RayTracingPipelineCreateInfoKHR rayPipelineInfo;
|
|
rayPipelineInfo.setStageCount(static_cast<uint32_t>(stages.size())); // Stages are shaders
|
|
rayPipelineInfo.setPStages(stages.data());
|
|
|
|
rayPipelineInfo.setGroupCount(static_cast<uint32_t>(
|
|
m_rtShaderGroups.size())); // 1-raygen, n-miss, n-(hit[+anyhit+intersect])
|
|
rayPipelineInfo.setPGroups(m_rtShaderGroups.data());
|
|
|
|
rayPipelineInfo.setMaxPipelineRayRecursionDepth(2); // Ray depth
|
|
rayPipelineInfo.setLayout(m_rtPipelineLayout);
|
|
m_rtPipeline = m_device.createRayTracingPipelineKHR({}, {}, rayPipelineInfo).value;
|
|
|
|
|
|
m_sbtWrapper.create(m_rtPipeline, rayPipelineInfo);
|
|
|
|
|
|
m_device.destroy(raygenSM);
|
|
m_device.destroy(missSM);
|
|
m_device.destroy(shadowmissSM);
|
|
m_device.destroy(chitSM);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Ray Tracing the scene
|
|
//
|
|
void HelloVulkan::raytrace(const vk::CommandBuffer& cmdBuf, const nvmath::vec4f& clearColor)
|
|
{
|
|
m_debug.beginLabel(cmdBuf, "Ray trace");
|
|
// Initializing push constant values
|
|
m_rtPushConstants.clearColor = clearColor;
|
|
m_rtPushConstants.lightPosition = m_pushConstant.lightPosition;
|
|
m_rtPushConstants.lightIntensity = m_pushConstant.lightIntensity;
|
|
m_rtPushConstants.lightType = m_pushConstant.lightType;
|
|
|
|
cmdBuf.bindPipeline(vk::PipelineBindPoint::eRayTracingKHR, m_rtPipeline);
|
|
cmdBuf.bindDescriptorSets(vk::PipelineBindPoint::eRayTracingKHR, m_rtPipelineLayout, 0,
|
|
{m_rtDescSet, m_descSet}, {});
|
|
cmdBuf.pushConstants<RtPushConstant>(m_rtPipelineLayout,
|
|
vk::ShaderStageFlagBits::eRaygenKHR
|
|
| vk::ShaderStageFlagBits::eClosestHitKHR
|
|
| vk::ShaderStageFlagBits::eMissKHR,
|
|
0, m_rtPushConstants);
|
|
|
|
|
|
auto regions = m_sbtWrapper.getRegions();
|
|
cmdBuf.traceRaysKHR(regions[0], regions[1], regions[2], regions[3], m_size.width, m_size.height,
|
|
1);
|
|
|
|
m_debug.endLabel(cmdBuf);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// #VK_animation
|
|
|
|
void HelloVulkan::animationInstances(float time)
|
|
{
|
|
const auto nbWuson = static_cast<int32_t>(m_objInstance.size() - 2);
|
|
const float deltaAngle = 6.28318530718f / static_cast<float>(nbWuson);
|
|
const float wusonLength = 3.f;
|
|
const float radius = wusonLength / (2.f * sin(deltaAngle / 2.0f));
|
|
const float offset = time * 0.5f;
|
|
|
|
for(int i = 0; i < nbWuson; i++)
|
|
{
|
|
int wusonIdx = i + 1;
|
|
ObjInstance& inst = m_objInstance[wusonIdx];
|
|
inst.transform = nvmath::rotation_mat4_y(i * deltaAngle + offset)
|
|
* nvmath::translation_mat4(radius, 0.f, 0.f);
|
|
inst.transformIT = nvmath::transpose(nvmath::invert(inst.transform));
|
|
|
|
nvvk::RaytracingBuilderKHR::Instance& tinst = m_tlas[wusonIdx];
|
|
tinst.transform = inst.transform;
|
|
}
|
|
|
|
// Update the buffer
|
|
vk::DeviceSize bufferSize = m_objInstance.size() * sizeof(ObjInstance);
|
|
nvvk::Buffer stagingBuffer =
|
|
m_alloc.createBuffer(bufferSize, vk::BufferUsageFlagBits::eTransferSrc,
|
|
vk::MemoryPropertyFlagBits::eHostVisible);
|
|
// Copy data to staging buffer
|
|
auto* gInst = m_alloc.map(stagingBuffer);
|
|
memcpy(gInst, m_objInstance.data(), bufferSize);
|
|
m_alloc.unmap(stagingBuffer);
|
|
// Copy staging buffer to the Scene Description buffer
|
|
nvvk::CommandPool genCmdBuf(m_device, m_graphicsQueueIndex);
|
|
vk::CommandBuffer cmdBuf = genCmdBuf.createCommandBuffer();
|
|
cmdBuf.copyBuffer(stagingBuffer.buffer, m_sceneDesc.buffer, vk::BufferCopy(0, 0, bufferSize));
|
|
m_debug.endLabel(cmdBuf);
|
|
genCmdBuf.submitAndWait(cmdBuf);
|
|
m_alloc.destroy(stagingBuffer);
|
|
|
|
m_rtBuilder.buildTlas(m_tlas, m_rtFlags, true);
|
|
}
|
|
|
|
void HelloVulkan::animationObject(float time)
|
|
{
|
|
ObjModel& model = m_objModel[2];
|
|
|
|
updateCompDescriptors(model.vertexBuffer);
|
|
|
|
nvvk::CommandPool genCmdBuf(m_device, m_graphicsQueueIndex);
|
|
vk::CommandBuffer cmdBuf = genCmdBuf.createCommandBuffer();
|
|
|
|
cmdBuf.bindPipeline(vk::PipelineBindPoint::eCompute, m_compPipeline);
|
|
cmdBuf.bindDescriptorSets(vk::PipelineBindPoint::eCompute, m_compPipelineLayout, 0,
|
|
{m_compDescSet}, {});
|
|
cmdBuf.pushConstants(m_compPipelineLayout, vk::ShaderStageFlagBits::eCompute, 0, sizeof(float),
|
|
&time);
|
|
cmdBuf.dispatch(model.nbVertices, 1, 1);
|
|
genCmdBuf.submitAndWait(cmdBuf);
|
|
m_rtBuilder.updateBlas(2);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// #VK_compute
|
|
void HelloVulkan::createCompDescriptors()
|
|
{
|
|
m_compDescSetLayoutBind.addBinding(vk::DescriptorSetLayoutBinding(
|
|
0, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute));
|
|
|
|
m_compDescSetLayout = m_compDescSetLayoutBind.createLayout(m_device);
|
|
m_compDescPool = m_compDescSetLayoutBind.createPool(m_device, 1);
|
|
m_compDescSet = nvvk::allocateDescriptorSet(m_device, m_compDescPool, m_compDescSetLayout);
|
|
}
|
|
|
|
void HelloVulkan::updateCompDescriptors(nvvk::Buffer& vertex)
|
|
{
|
|
std::vector<vk::WriteDescriptorSet> writes;
|
|
vk::DescriptorBufferInfo dbiUnif{vertex.buffer, 0, VK_WHOLE_SIZE};
|
|
writes.emplace_back(m_compDescSetLayoutBind.makeWrite(m_compDescSet, 0, &dbiUnif));
|
|
m_device.updateDescriptorSets(static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
|
|
}
|
|
|
|
void HelloVulkan::createCompPipelines()
|
|
{
|
|
// pushing time
|
|
vk::PushConstantRange push_constants = {vk::ShaderStageFlagBits::eCompute, 0, sizeof(float)};
|
|
vk::PipelineLayoutCreateInfo layout_info{{}, 1, &m_compDescSetLayout, 1, &push_constants};
|
|
m_compPipelineLayout = m_device.createPipelineLayout(layout_info);
|
|
vk::ComputePipelineCreateInfo computePipelineCreateInfo{{}, {}, m_compPipelineLayout};
|
|
|
|
computePipelineCreateInfo.stage = nvvk::createShaderStageInfo(
|
|
m_device, nvh::loadFile("spv/anim.comp.spv", true, defaultSearchPaths, true),
|
|
VK_SHADER_STAGE_COMPUTE_BIT);
|
|
|
|
m_compPipeline = m_device.createComputePipeline({}, computePipelineCreateInfo).value;
|
|
m_device.destroy(computePipelineCreateInfo.stage.module);
|
|
}
|