| .. | ||
| images | ||
| shaders | ||
| CMakeLists.txt | ||
| hello_vulkan.cpp | ||
| hello_vulkan.h | ||
| main.cpp | ||
| README.md | ||
Specialization Constants
In Vulkans, shaders are compiled to Spir-V, but the driver completes optimization during pipeline creation. Having specialization constants in a shader, is like having #defines that can be changed when pipeline creation is submitted.
In this example, we will add three specialization constants with all possible permutations.
- USE_DIFFUSE: to add or not the diffuse contribution
- USE_SPECULAR: to add or not the specular contribution
- TRACE_SHADOW: to trace or not a shadow ray
Shader
In the closest hit shader (raytrace.chit), we will add the three constants. Note that we are using int only because the tiny helper class later is made for int values.
layout(constant_id = 0) const int USE_DIFFUSE = 1;
layout(constant_id = 1) const int USE_SPECULAR = 1;
layout(constant_id = 2) const int TRACE_SHADOW = 1;
And later in the code, we branch based on the values. The modification of the shader will look like this.
// Diffuse
vec3 diffuse = vec3(0);
if(USE_DIFFUSE == 1)
{
diffuse = computeDiffuse(mat, L, normal);
if(mat.textureId >= 0)
{
uint txtId = mat.textureId + scnDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y
+ v2.texCoord * barycentrics.z;
diffuse *= texture(textureSamplers[nonuniformEXT(txtId)], texCoord).xyz;
}
}
vec3 specular = vec3(0);
float attenuation = 1;
// Tracing shadow ray only if the light is visible from the surface
if(dot(normal, L) > 0)
{
if(TRACE_SHADOW == 1)
{
float tMin = 0.001;
float tMax = lightDistance;
vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
vec3 rayDir = L;
uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT
| gl_RayFlagsSkipClosestHitShaderEXT;
isShadowed = true;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask
0, // sbtRecordOffset
0, // sbtRecordStride
1, // missIndex
origin, // ray origin
tMin, // ray min range
rayDir, // ray direction
tMax, // ray max range
1 // payload (location = 1)
);
}
else
isShadowed = false;
if(isShadowed)
{
attenuation = 0.3;
}
else
{
// Specular
if(USE_SPECULAR == 1)
{
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, normal);
}
}
}
Running the example will not change anything, since by default it will do everything as it usually does.
Pipeline
The specialization constants must be attached to their stages described by VkPipelineShaderStageCreateInfo structs.
See specialization contants reference
In our example, we will have only integers for constant data. There are various ways to do this, but here is the helper class we will be using to add as many constant IDs and values as we want. We will add specialization constants by calling this class's add function with a constant ID and a value, or with a vector of pairs of IDs and values.
//////////////////////////////////////////////////////////////////////////
/// Helper to generate specialization info
class Specialization
{
public:
void add(uint32_t constantID, int32_t value)
{
spec_values.push_back(value);
vk::SpecializationMapEntry entry;
entry.constantID = constantID;
entry.size = sizeof(int32_t);
entry.offset = static_cast<uint32_t>(spec_entries.size() * sizeof(int32_t));
spec_entries.emplace_back(entry);
}
void add(const std::vector<std::pair<uint32_t, int32_t>>& const_values)
{
for(const auto& v : const_values)
add(v.first, v.second);
}
vk::SpecializationInfo* getSpecialization()
{
spec_info.setData<int32_t>(spec_values);
spec_info.setMapEntries(spec_entries);
return &spec_info;
}
private:
std::vector<int32_t> spec_values;
std::vector<vk::SpecializationMapEntry> spec_entries;
vk::SpecializationInfo spec_info;
};
In HelloVulkan::createRtPipeline(),
first move the Closest Hit shader module creation up in the function next to the other one, as follow ...
vk::ShaderModule raygenSM = nvvk::createShaderModule(
m_device, nvh::loadFile("spv/raytrace.rgen.spv", true, defaultSearchPaths, true));
vk::ShaderModule missSM = nvvk::createShaderModule(
m_device, nvh::loadFile("spv/raytrace.rmiss.spv", true, defaultSearchPaths, true));
// The second miss shader is invoked when a shadow ray misses the geometry. It
// simply indicates that no occlusion has been found
vk::ShaderModule shadowmissSM = nvvk::createShaderModule(
m_device, nvh::loadFile("spv/raytraceShadow.rmiss.spv", true, defaultSearchPaths, true));
vk::ShaderModule chitSM = nvvk::createShaderModule(
m_device, nvh::loadFile("spv/raytrace.rchit.spv", true, defaultSearchPaths, true));
Thenjust after creating the shader modules, create a Specialization for each of the 8 on/off permutations of the 3 constants.
// Specialization
std::vector<Specialization> specializations(8);
for(int i = 0; i < 8; i++)
{
int a = ((i >> 2) % 2) == 1;
int b = ((i >> 1) % 2) == 1;
int c = ((i >> 0) % 2) == 1;
specializations[i].add({{0, a}, {1, b}, {2, c}});
}
Then we will create as many HIT shader groups as we have specializations. This will give us the ability later to choose which 'specialization' we want to use.
// Hit Group - Closest Hit + AnyHit
for(size_t i = 0; i < specializations.size(); i++)
{
vk::RayTracingShaderGroupCreateInfoKHR hg{vk::RayTracingShaderGroupTypeKHR::eTrianglesHitGroup,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
hg.setClosestHitShader(static_cast<uint32_t>(stages.size()));
vk::PipelineShaderStageCreateInfo stage;
stage.stage = vk::ShaderStageFlagBits::eClosestHitKHR;
stage.module = chitSM;
stage.pName = "main";
stage.pSpecializationInfo = specializations[i].getSpecialization();
stages.push_back(stage);
m_rtShaderGroups.push_back(hg);
}
Note, it is important that the data and structures are not created on the stack inside the loop, because we are passing the data address and specialization information, so all this would become invalid when the pipeline is created.
Using Specialization
If you would run the sample, nothing would have changed. This is because each TLAS's hitGroupId is set to 0.
A quick test would be to change the value to 4, corresponding to only using diffuse.
rayInst.hitGroupId = 4; // We will use the same hit group for all objects
Knowing the type of material each object is using, it would be possible to choose the appropriate specialization for each object.
Interactive Change
In our example, we will allow to choose globally the specialization for all objects. To do this, we will add
a new entry to the push constants structure, for both ObjPushConstant and RtPushConstant.
At the end of both structures, add
int specialization{7}; // All in use
In raytrace.rgen, we will use this new value to offset the hit group. Instead of always taking the hit group 0, it will
use the one we choose.
Add the specialization to the push constant layout.
layout(push_constant) uniform Constants
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
int specialization;
}
pushC;
Then where we trace, we will use the specialization value to change the SBT offset.
traceRayEXT(topLevelAS, // acceleration structure
rayFlags, // rayFlags
0xFF, // cullMask
pushC.specialization, // sbtRecordOffset
0, // sbtRecordStride
0, // missIndex
origin.xyz, // ray origin
tMin, // ray min range
direction.xyz, // ray direction
tMax, // ray max range
0 // payload (location = 0)
);
Now we only need UI to change interactively the value.
In main.cpp renderUI(), add the following code.
// Specialization
ImGui::SliderInt("Specialization", &helloVk.m_pushConstant.specialization, 0, 7);
int s = helloVk.m_pushConstant.specialization;
int a = ((s >> 2) % 2) == 1;
int b = ((s >> 1) % 2) == 1;
int c = ((s >> 0) % 2) == 1;
ImGui::Checkbox("Use Diffuse", (bool*)&a);
ImGui::Checkbox("Use Specular", (bool*)&b);
ImGui::Checkbox("Trace shadow", (bool*)&c);
helloVk.m_pushConstant.specialization = (a << 2) + (b << 1) + c;
