bluenoise-raytracer/ray_tracing__advance/hello_vulkan.cpp
2020-11-24 16:31:21 +01:00

607 lines
24 KiB
C++

/* Copyright (c) 2014-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sstream>
#include <vulkan/vulkan.hpp>
extern std::vector<std::string> defaultSearchPaths;
#define VMA_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#include "fileformats/stb_image.h"
#include "obj_loader.h"
#include "hello_vulkan.h"
#include "nvh//cameramanipulator.hpp"
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/pipeline_vk.hpp"
#include "nvh/fileoperations.hpp"
#include "nvvk/commands_vk.hpp"
#include "nvvk/renderpasses_vk.hpp"
// Holding the camera matrices
struct CameraMatrices
{
nvmath::mat4f view;
nvmath::mat4f proj;
nvmath::mat4f viewInverse;
// #VKRay
nvmath::mat4f projInverse;
};
//--------------------------------------------------------------------------------------------------
// Keep the handle on the device
// Initialize the tool to do all our allocations: buffers, images
//
void HelloVulkan::setup(const vk::Instance& instance,
const vk::Device& device,
const vk::PhysicalDevice& physicalDevice,
uint32_t queueFamily)
{
AppBase::setup(instance, device, physicalDevice, queueFamily);
#if defined(NVVK_ALLOC_DEDICATED)
m_alloc.init(device, physicalDevice);
#elif defined(NVVK_ALLOC_DMA)
m_memAllocator.init(device, physicalDevice);
m_memAllocator.setAllocateFlags(VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT, true);
m_alloc.init(device, physicalDevice, &m_memAllocator);
#elif defined(NVVK_ALLOC_VMA)
VmaAllocatorCreateInfo allocatorInfo = {};
allocatorInfo.physicalDevice = physicalDevice;
allocatorInfo.instance = instance;
allocatorInfo.device = device;
allocatorInfo.flags = VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT;
vmaCreateAllocator(&allocatorInfo, &m_memAllocator);
m_alloc.init(device, physicalDevice, m_memAllocator);
#endif
m_debug.setup(m_device);
m_offscreen.setup(device, &m_alloc, queueFamily);
m_raytrace.setup(device, physicalDevice, &m_alloc, queueFamily);
}
//--------------------------------------------------------------------------------------------------
// Called at each frame to update the camera matrix
//
void HelloVulkan::updateUniformBuffer(const vk::CommandBuffer& cmdBuf)
{
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
CameraMatrices ubo = {};
ubo.view = CameraManip.getMatrix();
ubo.proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
// ubo.proj[1][1] *= -1; // Inverting Y for Vulkan
ubo.viewInverse = nvmath::invert(ubo.view);
// #VKRay
ubo.projInverse = nvmath::invert(ubo.proj);
cmdBuf.updateBuffer<CameraMatrices>(m_cameraMat.buffer, 0, ubo);
// Making sure the matrix buffer will be available
vk::MemoryBarrier mb{vk::AccessFlagBits::eTransferWrite, vk::AccessFlagBits::eShaderRead};
cmdBuf.pipelineBarrier(vk::PipelineStageFlagBits::eTransfer,
vk::PipelineStageFlagBits::eVertexShader
| vk::PipelineStageFlagBits::eAccelerationStructureBuildKHR,
vk::DependencyFlagBits::eDeviceGroup, {mb}, {}, {});
}
//--------------------------------------------------------------------------------------------------
// Describing the layout pushed when rendering
//
void HelloVulkan::createDescriptorSetLayout()
{
using vkDS = vk::DescriptorSetLayoutBinding;
using vkDT = vk::DescriptorType;
using vkSS = vk::ShaderStageFlagBits;
uint32_t nbTxt = static_cast<uint32_t>(m_textures.size());
uint32_t nbObj = static_cast<uint32_t>(m_objModel.size());
// Camera matrices (binding = 0)
m_descSetLayoutBind.addBinding(
vkDS(0, vkDT::eUniformBuffer, 1, vkSS::eVertex | vkSS::eRaygenKHR));
// Materials (binding = 1)
m_descSetLayoutBind.addBinding(
vkDS(1, vkDT::eStorageBuffer, nbObj + 1, // Adding Implicit mat too
vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
// Scene description (binding = 2)
m_descSetLayoutBind.addBinding( //
vkDS(2, vkDT::eStorageBuffer, 1,
vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
// Textures (binding = 3)
m_descSetLayoutBind.addBinding(
vkDS(3, vkDT::eCombinedImageSampler, nbTxt, vkSS::eFragment | vkSS::eClosestHitKHR));
// Materials (binding = 4)
m_descSetLayoutBind.addBinding(vkDS(4, vkDT::eStorageBuffer, nbObj,
vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
// Storing vertices (binding = 5)
m_descSetLayoutBind.addBinding( //
vkDS(5, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
// Storing indices (binding = 6)
m_descSetLayoutBind.addBinding( //
vkDS(6, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
// Storing implicit obj (binding = 7)
m_descSetLayoutBind.addBinding( //
vkDS(7, vkDT::eStorageBuffer, 1,
vkSS::eClosestHitKHR | vkSS::eIntersectionKHR | vkSS::eAnyHitKHR));
m_descSetLayout = m_descSetLayoutBind.createLayout(m_device);
m_descPool = m_descSetLayoutBind.createPool(m_device, 1);
m_descSet = nvvk::allocateDescriptorSet(m_device, m_descPool, m_descSetLayout);
}
//--------------------------------------------------------------------------------------------------
// Setting up the buffers in the descriptor set
//
void HelloVulkan::updateDescriptorSet()
{
std::vector<vk::WriteDescriptorSet> writes;
// Camera matrices and scene description
vk::DescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 0, &dbiUnif));
vk::DescriptorBufferInfo dbiSceneDesc{m_sceneDesc.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 2, &dbiSceneDesc));
// All material buffers, 1 buffer per OBJ
std::vector<vk::DescriptorBufferInfo> dbiMat;
std::vector<vk::DescriptorBufferInfo> dbiMatIdx;
std::vector<vk::DescriptorBufferInfo> dbiVert;
std::vector<vk::DescriptorBufferInfo> dbiIdx;
for(auto& model : m_objModel)
{
dbiMat.emplace_back(model.matColorBuffer.buffer, 0, VK_WHOLE_SIZE);
dbiMatIdx.emplace_back(model.matIndexBuffer.buffer, 0, VK_WHOLE_SIZE);
dbiVert.emplace_back(model.vertexBuffer.buffer, 0, VK_WHOLE_SIZE);
dbiIdx.emplace_back(model.indexBuffer.buffer, 0, VK_WHOLE_SIZE);
}
dbiMat.emplace_back(m_implObjects.implMatBuf.buffer, 0, VK_WHOLE_SIZE); // Adding implicit mat
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 1, dbiMat.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 4, dbiMatIdx.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 5, dbiVert.data()));
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 6, dbiIdx.data()));
// All texture samplers
std::vector<vk::DescriptorImageInfo> diit;
for(auto& texture : m_textures)
{
diit.emplace_back(texture.descriptor);
}
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, 3, diit.data()));
vk::DescriptorBufferInfo dbiImplDesc{m_implObjects.implBuf.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, 7, &dbiImplDesc));
// Writing the information
m_device.updateDescriptorSets(static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Creating the pipeline layout
//
void HelloVulkan::createGraphicsPipeline()
{
using vkSS = vk::ShaderStageFlagBits;
vk::PushConstantRange pushConstantRanges = {vkSS::eVertex | vkSS::eFragment, 0,
sizeof(ObjPushConstants)};
// Creating the Pipeline Layout
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
vk::DescriptorSetLayout descSetLayout(m_descSetLayout);
pipelineLayoutCreateInfo.setSetLayoutCount(1);
pipelineLayoutCreateInfo.setPSetLayouts(&descSetLayout);
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstantRanges);
m_pipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
// Creating the Pipeline
std::vector<std::string> paths = defaultSearchPaths;
nvvk::GraphicsPipelineGeneratorCombined gpb(m_device, m_pipelineLayout, m_offscreen.renderPass());
gpb.depthStencilState.depthTestEnable = true;
gpb.addShader(nvh::loadFile("shaders/vert_shader.vert.spv", true, paths, true), vkSS::eVertex);
gpb.addShader(nvh::loadFile("shaders/frag_shader.frag.spv", true, paths, true), vkSS::eFragment);
gpb.addBindingDescription({0, sizeof(VertexObj)});
gpb.addAttributeDescriptions(std::vector<vk::VertexInputAttributeDescription>{
{0, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, pos)},
{1, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, nrm)},
{2, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, color)},
{3, 0, vk::Format::eR32G32Sfloat, offsetof(VertexObj, texCoord)}});
m_graphicsPipeline = gpb.createPipeline();
m_debug.setObjectName(m_graphicsPipeline, "Graphics");
}
//--------------------------------------------------------------------------------------------------
// Loading the OBJ file and setting up all buffers
//
void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform)
{
using vkBU = vk::BufferUsageFlagBits;
LOGI("Loading File: %s \n", filename.c_str());
ObjLoader loader;
loader.loadModel(filename);
// Converting from Srgb to linear
for(auto& m : loader.m_materials)
{
m.ambient = nvmath::pow(m.ambient, 2.2f);
m.diffuse = nvmath::pow(m.diffuse, 2.2f);
m.specular = nvmath::pow(m.specular, 2.2f);
}
ObjInstance instance;
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
instance.transform = transform;
instance.transformIT = nvmath::transpose(nvmath::invert(transform));
instance.txtOffset = static_cast<uint32_t>(m_textures.size());
ObjModel model;
model.nbIndices = static_cast<uint32_t>(loader.m_indices.size());
model.nbVertices = static_cast<uint32_t>(loader.m_vertices.size());
// Create the buffers on Device and copy vertices, indices and materials
nvvk::CommandPool cmdBufGet(m_device, m_graphicsQueueIndex);
vk::CommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
model.vertexBuffer =
m_alloc.createBuffer(cmdBuf, loader.m_vertices,
vkBU::eVertexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress
| vkBU::eAccelerationStructureBuildInputReadOnlyKHR);
model.indexBuffer =
m_alloc.createBuffer(cmdBuf, loader.m_indices,
vkBU::eIndexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress
| vkBU::eAccelerationStructureBuildInputReadOnlyKHR);
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, vkBU::eStorageBuffer);
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, vkBU::eStorageBuffer);
// Creates all textures found
createTextureImages(cmdBuf, loader.m_textures);
cmdBufGet.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
std::string objNb = std::to_string(instance.objIndex);
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb).c_str()));
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb).c_str()));
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb).c_str()));
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb).c_str()));
m_objModel.emplace_back(model);
m_objInstance.emplace_back(instance);
}
//--------------------------------------------------------------------------------------------------
// Creating the uniform buffer holding the camera matrices
// - Buffer is host visible
//
void HelloVulkan::createUniformBuffer()
{
using vkBU = vk::BufferUsageFlagBits;
using vkMP = vk::MemoryPropertyFlagBits;
m_cameraMat = m_alloc.createBuffer(sizeof(CameraMatrices),
vkBU::eUniformBuffer | vkBU::eTransferDst, vkMP::eDeviceLocal);
m_debug.setObjectName(m_cameraMat.buffer, "cameraMat");
}
//--------------------------------------------------------------------------------------------------
// Create a storage buffer containing the description of the scene elements
// - Which geometry is used by which instance
// - Transformation
// - Offset for texture
//
void HelloVulkan::createSceneDescriptionBuffer()
{
using vkBU = vk::BufferUsageFlagBits;
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
auto cmdBuf = cmdGen.createCommandBuffer();
m_sceneDesc = m_alloc.createBuffer(cmdBuf, m_objInstance, vkBU::eStorageBuffer);
cmdGen.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
m_debug.setObjectName(m_sceneDesc.buffer, "sceneDesc");
}
//--------------------------------------------------------------------------------------------------
// Creating all textures and samplers
//
void HelloVulkan::createTextureImages(const vk::CommandBuffer& cmdBuf,
const std::vector<std::string>& textures)
{
using vkIU = vk::ImageUsageFlagBits;
vk::SamplerCreateInfo samplerCreateInfo{
{}, vk::Filter::eLinear, vk::Filter::eLinear, vk::SamplerMipmapMode::eLinear};
samplerCreateInfo.setMaxLod(FLT_MAX);
vk::Format format = vk::Format::eR8G8B8A8Srgb;
// If no textures are present, create a dummy one to accommodate the pipeline layout
if(textures.empty() && m_textures.empty())
{
nvvk::Texture texture;
std::array<uint8_t, 4> color{255u, 255u, 255u, 255u};
vk::DeviceSize bufferSize = sizeof(color);
auto imgSize = vk::Extent2D(1, 1);
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format);
// Creating the VKImage
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, color.data(), imageCreateInfo);
vk::ImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
// The image format must be in VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
nvvk::cmdBarrierImageLayout(cmdBuf, texture.image, vk::ImageLayout::eUndefined,
vk::ImageLayout::eShaderReadOnlyOptimal);
m_textures.push_back(texture);
}
else
{
// Uploading all images
for(const auto& texture : textures)
{
std::stringstream o;
int texWidth, texHeight, texChannels;
o << "media/textures/" << texture;
std::string txtFile = nvh::findFile(o.str(), defaultSearchPaths, true);
stbi_uc* stbi_pixels =
stbi_load(txtFile.c_str(), &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
std::array<stbi_uc, 4> color{255u, 0u, 255u, 255u};
stbi_uc* pixels = stbi_pixels;
// Handle failure
if(!stbi_pixels)
{
texWidth = texHeight = 1;
texChannels = 4;
pixels = reinterpret_cast<stbi_uc*>(color.data());
}
vk::DeviceSize bufferSize = static_cast<uint64_t>(texWidth) * texHeight * sizeof(uint8_t) * 4;
auto imgSize = vk::Extent2D(texWidth, texHeight);
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format, vkIU::eSampled, true);
{
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, pixels, imageCreateInfo);
nvvk::cmdGenerateMipmaps(cmdBuf, image.image, format, imgSize, imageCreateInfo.mipLevels);
vk::ImageViewCreateInfo ivInfo =
nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
nvvk::Texture texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
m_textures.push_back(texture);
}
stbi_image_free(stbi_pixels);
}
}
}
//--------------------------------------------------------------------------------------------------
// Destroying all allocations
//
void HelloVulkan::destroyResources()
{
m_device.destroy(m_graphicsPipeline);
m_device.destroy(m_pipelineLayout);
m_device.destroy(m_descPool);
m_device.destroy(m_descSetLayout);
m_alloc.destroy(m_cameraMat);
m_alloc.destroy(m_sceneDesc);
m_alloc.destroy(m_implObjects.implBuf);
m_alloc.destroy(m_implObjects.implMatBuf);
for(auto& m : m_objModel)
{
m_alloc.destroy(m.vertexBuffer);
m_alloc.destroy(m.indexBuffer);
m_alloc.destroy(m.matColorBuffer);
m_alloc.destroy(m.matIndexBuffer);
}
for(auto& t : m_textures)
{
m_alloc.destroy(t);
}
//#Post
m_offscreen.destroy();
// #VKRay
m_raytrace.destroy();
m_alloc.deinit();
#ifdef NVVK_ALLOC_DMA
m_memAllocator.deinit();
#elif defined(NVVK_ALLOC_VMA)
vmaDestroyAllocator(m_memAllocator);
#endif // NVVK_ALLOC_DMA
}
//--------------------------------------------------------------------------------------------------
// Drawing the scene in raster mode
//
void HelloVulkan::rasterize(const vk::CommandBuffer& cmdBuf)
{
using vkPBP = vk::PipelineBindPoint;
using vkSS = vk::ShaderStageFlagBits;
vk::DeviceSize offset{0};
m_debug.beginLabel(cmdBuf, "Rasterize");
// Dynamic Viewport
cmdBuf.setViewport(0, {vk::Viewport(0, 0, (float)m_size.width, (float)m_size.height, 0, 1)});
cmdBuf.setScissor(0, {{{0, 0}, {m_size.width, m_size.height}}});
// Drawing all triangles
cmdBuf.bindPipeline(vkPBP::eGraphics, m_graphicsPipeline);
cmdBuf.bindDescriptorSets(vkPBP::eGraphics, m_pipelineLayout, 0, {m_descSet}, {});
for(int i = 0; i < m_objInstance.size(); ++i)
{
auto& inst = m_objInstance[i];
auto& model = m_objModel[inst.objIndex];
m_pushConstants.instanceId = i; // Telling which instance is drawn
cmdBuf.pushConstants<ObjPushConstants>(m_pipelineLayout, vkSS::eVertex | vkSS::eFragment, 0,
m_pushConstants);
cmdBuf.bindVertexBuffers(0, {model.vertexBuffer.buffer}, {offset});
cmdBuf.bindIndexBuffer(model.indexBuffer.buffer, 0, vk::IndexType::eUint32);
cmdBuf.drawIndexed(model.nbIndices, 1, 0, 0, 0);
}
m_debug.endLabel(cmdBuf);
}
//--------------------------------------------------------------------------------------------------
// Handling resize of the window
//
void HelloVulkan::onResize(int /*w*/, int /*h*/)
{
m_offscreen.createFramebuffer(m_size);
m_offscreen.updateDescriptorSet();
m_raytrace.updateRtDescriptorSet(m_offscreen.colorTexture().descriptor.imageView);
resetFrame();
}
//--------------------------------------------------------------------------------------------------
// Initialize offscreen rendering
//
void HelloVulkan::initOffscreen()
{
m_offscreen.createFramebuffer(m_size);
m_offscreen.createDescriptor();
m_offscreen.createPipeline(m_renderPass);
m_offscreen.updateDescriptorSet();
}
//--------------------------------------------------------------------------------------------------
// Initialize Vulkan ray tracing
//
void HelloVulkan::initRayTracing()
{
m_raytrace.createBottomLevelAS(m_objModel, m_implObjects);
m_raytrace.createTopLevelAS(m_objInstance, m_implObjects);
m_raytrace.createRtDescriptorSet(m_offscreen.colorTexture().descriptor.imageView);
m_raytrace.createRtPipeline(m_descSetLayout);
m_raytrace.createRtShaderBindingTable();
}
//--------------------------------------------------------------------------------------------------
// Ray trace the scene
//
void HelloVulkan::raytrace(const vk::CommandBuffer& cmdBuf, const nvmath::vec4f& clearColor)
{
updateFrame();
if(m_pushConstants.frame >= m_maxFrames)
return;
m_raytrace.raytrace(cmdBuf, clearColor, m_descSet, m_size, m_pushConstants);
}
//--------------------------------------------------------------------------------------------------
// If the camera matrix has changed, resets the frame.
// otherwise, increments frame.
//
void HelloVulkan::updateFrame()
{
static nvmath::mat4f refCamMatrix;
static float refFov{CameraManip.getFov()};
const auto& m = CameraManip.getMatrix();
const auto fov = CameraManip.getFov();
if(memcmp(&refCamMatrix.a00, &m.a00, sizeof(nvmath::mat4f)) != 0 || refFov != fov)
{
resetFrame();
refCamMatrix = m;
refFov = fov;
}
m_pushConstants.frame++;
}
void HelloVulkan::resetFrame()
{
m_pushConstants.frame = -1;
}
void HelloVulkan::addImplSphere(nvmath::vec3f center, float radius, int matId)
{
ObjImplicit impl;
impl.minimum = center - radius;
impl.maximum = center + radius;
impl.objType = EObjType::eSphere;
impl.matId = matId;
m_implObjects.objImpl.push_back(impl);
}
void HelloVulkan::addImplCube(nvmath::vec3f minumum, nvmath::vec3f maximum, int matId)
{
ObjImplicit impl;
impl.minimum = minumum;
impl.maximum = maximum;
impl.objType = EObjType::eCube;
impl.matId = matId;
m_implObjects.objImpl.push_back(impl);
}
void HelloVulkan::addImplMaterial(const MaterialObj& mat)
{
m_implObjects.implMat.push_back(mat);
}
//--------------------------------------------------------------------------------------------------
// Create a storage buffer containing the description of the scene elements
// - Which geometry is used by which instance
// - Transformation
// - Offset for texture
//
void HelloVulkan::createImplictBuffers()
{
using vkBU = vk::BufferUsageFlagBits;
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
// Not allowing empty buffers
if(m_implObjects.objImpl.empty())
m_implObjects.objImpl.push_back({});
if(m_implObjects.implMat.empty())
m_implObjects.implMat.push_back({});
auto cmdBuf = cmdGen.createCommandBuffer();
m_implObjects.implBuf = m_alloc.createBuffer(cmdBuf, m_implObjects.objImpl,
vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress);
m_implObjects.implMatBuf =
m_alloc.createBuffer(cmdBuf, m_implObjects.implMat, vkBU::eStorageBuffer);
cmdGen.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
m_debug.setObjectName(m_implObjects.implBuf.buffer, "implicitObj");
m_debug.setObjectName(m_implObjects.implMatBuf.buffer, "implicitMat");
}