bluenoise-raytracer/ray_tracing_gltf/shaders/pathtrace.rchit

162 lines
5.5 KiB
GLSL

#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#include "binding.glsl"
#include "gltf.glsl"
#include "raycommon.glsl"
#include "sampling.glsl"
hitAttributeEXT vec2 attribs;
// clang-format off
layout(location = 0) rayPayloadInEXT hitPayload prd;
layout(location = 1) rayPayloadEXT bool isShadowed;
layout(set = 0, binding = 0 ) uniform accelerationStructureEXT topLevelAS;
layout(set = 0, binding = 2) readonly buffer _InstanceInfo {PrimMeshInfo primInfo[];};
layout(set = 1, binding = B_VERTICES) readonly buffer _VertexBuf {float vertices[];};
layout(set = 1, binding = B_INDICES) readonly buffer _Indices {uint indices[];};
layout(set = 1, binding = B_NORMALS) readonly buffer _NormalBuf {float normals[];};
layout(set = 1, binding = B_TEXCOORDS) readonly buffer _TexCoordBuf {float texcoord0[];};
layout(set = 1, binding = B_MATERIALS) readonly buffer _MaterialBuffer {GltfMaterial materials[];};
layout(set = 1, binding = B_TEXTURES) uniform sampler2D texturesMap[]; // all textures
// clang-format on
layout(push_constant) uniform Constants
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
}
pushC;
// Return the vertex position
vec3 getVertex(uint index)
{
vec3 vp;
vp.x = vertices[3 * index + 0];
vp.y = vertices[3 * index + 1];
vp.z = vertices[3 * index + 2];
return vp;
}
vec3 getNormal(uint index)
{
vec3 vp;
vp.x = normals[3 * index + 0];
vp.y = normals[3 * index + 1];
vp.z = normals[3 * index + 2];
return vp;
}
vec2 getTexCoord(uint index)
{
vec2 vp;
vp.x = texcoord0[2 * index + 0];
vp.y = texcoord0[2 * index + 1];
return vp;
}
void main()
{
// Retrieve the Primitive mesh buffer information
PrimMeshInfo pinfo = primInfo[gl_InstanceCustomIndexEXT];
// Getting the 'first index' for this mesh (offset of the mesh + offset of the triangle)
uint indexOffset = pinfo.indexOffset + (3 * gl_PrimitiveID);
uint vertexOffset = pinfo.vertexOffset; // Vertex offset as defined in glTF
uint matIndex = max(0, pinfo.materialIndex); // material of primitive mesh
// Getting the 3 indices of the triangle (local)
ivec3 triangleIndex = ivec3(indices[nonuniformEXT(indexOffset + 0)], //
indices[nonuniformEXT(indexOffset + 1)], //
indices[nonuniformEXT(indexOffset + 2)]);
triangleIndex += ivec3(vertexOffset); // (global)
const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y);
// Vertex of the triangle
const vec3 pos0 = getVertex(triangleIndex.x);
const vec3 pos1 = getVertex(triangleIndex.y);
const vec3 pos2 = getVertex(triangleIndex.z);
const vec3 position = pos0 * barycentrics.x + pos1 * barycentrics.y + pos2 * barycentrics.z;
const vec3 world_position = vec3(gl_ObjectToWorldEXT * vec4(position, 1.0));
// Normal
const vec3 nrm0 = getNormal(triangleIndex.x);
const vec3 nrm1 = getNormal(triangleIndex.y);
const vec3 nrm2 = getNormal(triangleIndex.z);
vec3 normal = normalize(nrm0 * barycentrics.x + nrm1 * barycentrics.y + nrm2 * barycentrics.z);
const vec3 world_normal = normalize(vec3(normal * gl_WorldToObjectEXT));
const vec3 geom_normal = normalize(cross(pos1 - pos0, pos2 - pos0));
// TexCoord
const vec2 uv0 = getTexCoord(triangleIndex.x);
const vec2 uv1 = getTexCoord(triangleIndex.y);
const vec2 uv2 = getTexCoord(triangleIndex.z);
const vec2 texcoord0 = uv0 * barycentrics.x + uv1 * barycentrics.y + uv2 * barycentrics.z;
// https://en.wikipedia.org/wiki/Path_tracing
// Material of the object
GltfMaterial mat = materials[nonuniformEXT(matIndex)];
vec3 emittance = mat.emissiveFactor;
// Pick a random direction from here and keep going.
vec3 tangent, bitangent;
createCoordinateSystem(world_normal, tangent, bitangent);
vec3 rayOrigin = world_position;
vec3 rayDirection = samplingHemisphere(prd.seed, tangent, bitangent, world_normal);
// Probability of the newRay (cosine distributed)
const float p = 1 / M_PI;
// Compute the BRDF for this ray (assuming Lambertian reflection)
float cos_theta = dot(rayDirection, world_normal);
vec3 albedo = mat.pbrBaseColorFactor.xyz;
if(mat.pbrBaseColorTexture > -1)
{
uint txtId = mat.pbrBaseColorTexture;
albedo *= texture(texturesMap[nonuniformEXT(txtId)], texcoord0).xyz;
}
vec3 BRDF = albedo / M_PI;
prd.rayOrigin = rayOrigin;
prd.rayDirection = rayDirection;
prd.hitValue = emittance;
prd.weight = BRDF * cos_theta / p;
return;
// Recursively trace reflected light sources.
if(prd.depth < 10)
{
prd.depth++;
float tMin = 0.001;
float tMax = 100000000.0;
uint flags = gl_RayFlagsOpaqueEXT;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask
0, // sbtRecordOffset
0, // sbtRecordStride
0, // missIndex
rayOrigin, // ray origin
tMin, // ray min range
rayDirection, // ray direction
tMax, // ray max range
0 // payload (location = 0)
);
}
vec3 incoming = prd.hitValue;
// Apply the Rendering Equation here.
prd.hitValue = emittance + (BRDF * incoming * cos_theta / p);
}