bluenoise-raytracer/ray_tracing_indirect_scissor/hello_vulkan.h
2021-06-11 12:25:06 +02:00

270 lines
11 KiB
C++

/*
* Copyright (c) 2014-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2014-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "nvvk/appbase_vk.hpp"
#include "nvvk/debug_util_vk.hpp"
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/memallocator_dma_vk.hpp"
#include "nvvk/resourceallocator_vk.hpp"
// #VKRay
#include "nvvk/raytraceKHR_vk.hpp"
//--------------------------------------------------------------------------------------------------
// Simple rasterizer of OBJ objects
// - Each OBJ loaded are stored in an `ObjModel` and referenced by a `ObjInstance`
// - It is possible to have many `ObjInstance` referencing the same `ObjModel`
// - Rendering is done in an offscreen framebuffer
// - The image of the framebuffer is displayed in post-process in a full-screen quad
//
class HelloVulkan : public nvvk::AppBaseVk
{
public:
void setup(const VkInstance& instance, const VkDevice& device, const VkPhysicalDevice& physicalDevice, uint32_t queueFamily) override;
void createDescriptorSetLayout();
void createGraphicsPipeline();
void loadModel(const std::string& filename, nvmath::mat4f transform = nvmath::mat4f(1));
void addLantern(nvmath::vec3f pos, nvmath::vec3f color, float brightness, float radius);
void updateDescriptorSet();
void createUniformBuffer();
void createSceneDescriptionBuffer();
void createTextureImages(const VkCommandBuffer& cmdBuf, const std::vector<std::string>& textures);
nvmath::mat4 getViewMatrix() { return CameraManip.getMatrix(); }
static constexpr float nearZ = 0.1f;
nvmath::mat4 getProjMatrix()
{
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
return nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, nearZ, 1000.0f);
}
void updateUniformBuffer(const VkCommandBuffer& cmdBuf);
void onResize(int /*w*/, int /*h*/) override;
void destroyResources();
void rasterize(const VkCommandBuffer& cmdBuff);
// The OBJ model
struct ObjModel
{
uint32_t nbIndices{0};
uint32_t nbVertices{0};
nvvk::Buffer vertexBuffer; // Device buffer of all 'Vertex'
nvvk::Buffer indexBuffer; // Device buffer of the indices forming triangles
nvvk::Buffer matColorBuffer; // Device buffer of array of 'Wavefront material'
nvvk::Buffer matIndexBuffer; // Device buffer of array of 'Wavefront material'
};
// Instance of the OBJ
struct ObjInstance
{
nvmath::mat4f transform{1}; // Position of the instance
nvmath::mat4f transformIT{1}; // Inverse transpose
uint32_t objIndex{0}; // Reference to the `m_objModel`
uint32_t txtOffset{0}; // Offset in `m_textures`
VkDeviceAddress vertices;
VkDeviceAddress indices;
VkDeviceAddress materials;
VkDeviceAddress materialIndices;
};
// Information pushed at each draw call
struct ObjPushConstant
{
nvmath::vec3f lightPosition{10.f, 15.f, 8.f};
int instanceId{0}; // To retrieve the transformation matrix
float lightIntensity{40.f};
int lightType{0}; // 0: point, 1: infinite
};
ObjPushConstant m_pushConstant;
// Information on each colored lantern illuminating the scene.
struct Lantern
{
nvmath::vec3f position;
nvmath::vec3f color;
float brightness;
float radius; // Max world-space distance that light illuminates.
};
// Information on each colored lantern, plus the info needed for dispatching the
// indirect ray trace command used to add its brightness effect.
// The dispatched ray trace covers pixels (offsetX, offsetY) to
// (offsetX + indirectCommand.width - 1, offsetY + indirectCommand.height - 1).
struct LanternIndirectEntry
{
// Filled in by the device using a compute shader.
// NOTE: I rely on indirectCommand being the first member.
VkTraceRaysIndirectCommandKHR indirectCommand;
int32_t offsetX;
int32_t offsetY;
// Filled in by the host.
Lantern lantern;
};
// Array of objects and instances in the scene. Not modifiable after acceleration structure build.
std::vector<ObjModel> m_objModel;
std::vector<ObjInstance> m_objInstance;
// Array of lanterns in scene. Not modifiable after acceleration structure build.
std::vector<Lantern> m_lanterns;
// Graphic pipeline
VkPipelineLayout m_pipelineLayout;
VkPipeline m_graphicsPipeline;
nvvk::DescriptorSetBindings m_descSetLayoutBind;
VkDescriptorPool m_descPool;
VkDescriptorSetLayout m_descSetLayout;
VkDescriptorSet m_descSet;
nvvk::Buffer m_cameraMat; // Device-Host of the camera matrices
nvvk::Buffer m_sceneDesc; // Device buffer of the OBJ instances
std::vector<nvvk::Texture> m_textures; // vector of all textures of the scene
nvvk::ResourceAllocatorDma m_alloc; // Allocator for buffer, images, acceleration structures
nvvk::DebugUtil m_debug; // Utility to name objects
// #Post
void createOffscreenRender();
void createPostPipeline();
void createPostDescriptor();
void updatePostDescriptorSet();
void drawPost(VkCommandBuffer cmdBuf);
nvvk::DescriptorSetBindings m_postDescSetLayoutBind;
VkDescriptorPool m_postDescPool{VK_NULL_HANDLE};
VkDescriptorSetLayout m_postDescSetLayout{VK_NULL_HANDLE};
VkDescriptorSet m_postDescSet{VK_NULL_HANDLE};
VkPipeline m_postPipeline{VK_NULL_HANDLE};
VkPipelineLayout m_postPipelineLayout{VK_NULL_HANDLE};
VkRenderPass m_offscreenRenderPass{VK_NULL_HANDLE};
VkFramebuffer m_offscreenFramebuffer{VK_NULL_HANDLE};
nvvk::Texture m_offscreenColor;
nvvk::Texture m_offscreenDepth;
VkFormat m_offscreenColorFormat{VK_FORMAT_R32G32B32A32_SFLOAT};
VkFormat m_offscreenDepthFormat{VK_FORMAT_X8_D24_UNORM_PACK32};
// #VKRay
void initRayTracing();
auto objectToVkGeometryKHR(const ObjModel& model);
private:
void fillLanternVerts(std::vector<nvmath::vec3f>& vertices, std::vector<uint32_t>& indices);
void createLanternModel();
public:
void createBottomLevelAS();
void createTopLevelAS();
void createRtDescriptorSet();
void updateRtDescriptorSet();
void createRtPipeline();
void createLanternIndirectDescriptorSet();
void createLanternIndirectCompPipeline();
void createRtShaderBindingTable();
void createLanternIndirectBuffer();
void raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& clearColor);
// Used to store lantern model, generated at runtime.
const float m_lanternModelRadius = 0.125;
nvvk::Buffer m_lanternVertexBuffer;
nvvk::Buffer m_lanternIndexBuffer;
nvvk::RaytracingBuilderKHR::BlasInput m_lanternBlasInput{};
// Index of lantern's BLAS in the BLAS array stored in m_rtBuilder.
size_t m_lanternBlasId;
VkPhysicalDeviceRayTracingPipelinePropertiesKHR m_rtProperties{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR};
nvvk::RaytracingBuilderKHR m_rtBuilder;
nvvk::DescriptorSetBindings m_rtDescSetLayoutBind;
VkDescriptorPool m_rtDescPool;
VkDescriptorSetLayout m_rtDescSetLayout;
VkDescriptorSet m_rtDescSet;
std::vector<VkRayTracingShaderGroupCreateInfoKHR> m_rtShaderGroups;
VkPipelineLayout m_rtPipelineLayout;
VkPipeline m_rtPipeline;
nvvk::DescriptorSetBindings m_lanternIndirectDescSetLayoutBind;
VkDescriptorPool m_lanternIndirectDescPool;
VkDescriptorSetLayout m_lanternIndirectDescSetLayout;
VkDescriptorSet m_lanternIndirectDescSet;
VkPipelineLayout m_lanternIndirectCompPipelineLayout;
VkPipeline m_lanternIndirectCompPipeline;
nvvk::Buffer m_rtSBTBuffer;
// Buffer to source vkCmdTraceRaysIndirectKHR indirect parameters and lantern color,
// position, etc. from when doing lantern lighting passes.
nvvk::Buffer m_lanternIndirectBuffer;
VkDeviceSize m_lanternCount = 0; // Set to actual lantern count after TLAS build, as
// that is the point no more lanterns may be added.
// Push constant for ray trace pipeline.
struct RtPushConstant
{
// Background color
nvmath::vec4f clearColor;
// Information on the light in the sky used when lanternPassNumber = -1.
nvmath::vec3f lightPosition;
float lightIntensity;
int32_t lightType;
// -1 if this is the full-screen pass. Otherwise, this pass is to add light
// from lantern number lanternPassNumber. We use this to lookup trace indirect
// parameters in m_lanternIndirectBuffer.
int32_t lanternPassNumber;
// Pixel dimensions of the output image.
int32_t screenX;
int32_t screenY;
// See m_lanternDebug.
int32_t lanternDebug;
} m_rtPushConstants;
// Copied to RtPushConstant::lanternDebug. If true,
// make lantern produce constant light regardless of distance
// so that I can see the screen rectangle coverage.
bool m_lanternDebug = false;
// Push constant for compute shader filling lantern indirect buffer.
// Barely fits in 128-byte push constant limit guaranteed by spec.
struct LanternIndirectPushConstants
{
nvmath::vec4 viewRowX; // First 3 rows of view matrix.
nvmath::vec4 viewRowY; // Set w=1 implicitly in shader.
nvmath::vec4 viewRowZ;
nvmath::mat4 proj; // Perspective matrix
float nearZ; // Near plane used to create projection matrix.
// Pixel dimensions of output image (needed to scale NDC to screen coordinates).
int32_t screenX;
int32_t screenY;
// Length of the LanternIndirectEntry array.
int32_t lanternCount;
} m_lanternIndirectPushConstants;
};