bluenoise-raytracer/ray_tracing_ao/shaders/raycommon.glsl
2021-03-18 15:00:48 -07:00

190 lines
6.2 KiB
GLSL

/* Copyright (c) 2014-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//-
// This utility compresses a normal(x,y,z) to a uint and decompresses it
#define C_Stack_Max 3.402823466e+38f
uint CompressUnitVec(vec3 nv)
{
// map to octahedron and then flatten to 2D (see 'Octahedron Environment Maps' by Engelhardt & Dachsbacher)
if((nv.x < C_Stack_Max) && !isinf(nv.x))
{
const float d = 32767.0f / (abs(nv.x) + abs(nv.y) + abs(nv.z));
int x = int(roundEven(nv.x * d));
int y = int(roundEven(nv.y * d));
if(nv.z < 0.0f)
{
const int maskx = x >> 31;
const int masky = y >> 31;
const int tmp = 32767 + maskx + masky;
const int tmpx = x;
x = (tmp - (y ^ masky)) ^ maskx;
y = (tmp - (tmpx ^ maskx)) ^ masky;
}
uint packed = (uint(y + 32767) << 16) | uint(x + 32767);
if(packed == ~0u)
return ~0x1u;
return packed;
}
else
{
return ~0u;
}
}
float ShortToFloatM11(const int v) // linearly maps a short 32767-32768 to a float -1-+1 //!! opt.?
{
return (v >= 0) ? (uintBitsToFloat(0x3F800000u | (uint(v) << 8)) - 1.0f) :
(uintBitsToFloat((0x80000000u | 0x3F800000u) | (uint(-v) << 8)) + 1.0f);
}
vec3 DecompressUnitVec(uint packed)
{
if(packed != ~0u) // sanity check, not needed as isvalid_unit_vec is called earlier
{
int x = int(packed & 0xFFFFu) - 32767;
int y = int(packed >> 16) - 32767;
const int maskx = x >> 31;
const int masky = y >> 31;
const int tmp0 = 32767 + maskx + masky;
const int ymask = y ^ masky;
const int tmp1 = tmp0 - (x ^ maskx);
const int z = tmp1 - ymask;
float zf;
if(z < 0)
{
x = (tmp0 - ymask) ^ maskx;
y = tmp1 ^ masky;
zf = uintBitsToFloat((0x80000000u | 0x3F800000u) | (uint(-z) << 8)) + 1.0f;
}
else
{
zf = uintBitsToFloat(0x3F800000u | (uint(z) << 8)) - 1.0f;
}
return normalize(vec3(ShortToFloatM11(x), ShortToFloatM11(y), zf));
}
else
{
return vec3(C_Stack_Max);
}
}
//-------------------------------------------------------------------------------------------------
// Avoiding self intersections (see Ray Tracing Gems, Ch. 6)
//
vec3 OffsetRay(in vec3 p, in vec3 n)
{
const float intScale = 256.0f;
const float floatScale = 1.0f / 65536.0f;
const float origin = 1.0f / 32.0f;
ivec3 of_i = ivec3(intScale * n.x, intScale * n.y, intScale * n.z);
vec3 p_i = vec3(intBitsToFloat(floatBitsToInt(p.x) + ((p.x < 0) ? -of_i.x : of_i.x)),
intBitsToFloat(floatBitsToInt(p.y) + ((p.y < 0) ? -of_i.y : of_i.y)),
intBitsToFloat(floatBitsToInt(p.z) + ((p.z < 0) ? -of_i.z : of_i.z)));
return vec3(abs(p.x) < origin ? p.x + floatScale * n.x : p_i.x, //
abs(p.y) < origin ? p.y + floatScale * n.y : p_i.y, //
abs(p.z) < origin ? p.z + floatScale * n.z : p_i.z);
}
//////////////////////////// AO //////////////////////////////////////
#define EPS 0.05
const float M_PI = 3.141592653589;
void ComputeDefaultBasis(const vec3 normal, out vec3 x, out vec3 y)
{
// ZAP's default coordinate system for compatibility
vec3 z = normal;
const float yz = -z.y * z.z;
y = normalize(((abs(z.z) > 0.99999f) ? vec3(-z.x * z.y, 1.0f - z.y * z.y, yz) :
vec3(-z.x * z.z, yz, 1.0f - z.z * z.z)));
x = cross(y, z);
}
//-------------------------------------------------------------------------------------------------
// Random
//-------------------------------------------------------------------------------------------------
// Generate a random unsigned int from two unsigned int values, using 16 pairs
// of rounds of the Tiny Encryption Algorithm. See Zafar, Olano, and Curtis,
// "GPU Random Numbers via the Tiny Encryption Algorithm"
uint tea(uint val0, uint val1)
{
uint v0 = val0;
uint v1 = val1;
uint s0 = 0;
for(uint n = 0; n < 16; n++)
{
s0 += 0x9e3779b9;
v0 += ((v1 << 4) + 0xa341316c) ^ (v1 + s0) ^ ((v1 >> 5) + 0xc8013ea4);
v1 += ((v0 << 4) + 0xad90777d) ^ (v0 + s0) ^ ((v0 >> 5) + 0x7e95761e);
}
return v0;
}
uvec2 pcg2d(uvec2 v)
{
v = v * 1664525u + 1013904223u;
v.x += v.y * 1664525u;
v.y += v.x * 1664525u;
v = v ^ (v >> 16u);
v.x += v.y * 1664525u;
v.y += v.x * 1664525u;
v = v ^ (v >> 16u);
return v;
}
// Generate a random unsigned int in [0, 2^24) given the previous RNG state
// using the Numerical Recipes linear congruential generator
uint lcg(inout uint prev)
{
uint LCG_A = 1664525u;
uint LCG_C = 1013904223u;
prev = (LCG_A * prev + LCG_C);
return prev & 0x00FFFFFF;
}
// Generate a random float in [0, 1) given the previous RNG state
float rnd(inout uint seed)
{
return (float(lcg(seed)) / float(0x01000000));
}