bluenoise-raytracer/ray_tracing_anyhit/shaders/raytrace.rchit
2021-06-11 12:25:06 +02:00

157 lines
5.4 KiB
GLSL

/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#version 460
#extension GL_EXT_ray_tracing : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require
#extension GL_EXT_buffer_reference2 : require
#include "raycommon.glsl"
#include "wavefront.glsl"
hitAttributeEXT vec2 attribs;
// clang-format off
layout(location = 0) rayPayloadInEXT hitPayload prd;
layout(location = 1) rayPayloadEXT shadowPayload prdShadow;
layout(buffer_reference, scalar) buffer Vertices {Vertex v[]; }; // Positions of an object
layout(buffer_reference, scalar) buffer Indices {ivec3 i[]; }; // Triangle indices
layout(buffer_reference, scalar) buffer Materials {WaveFrontMaterial m[]; }; // Array of all materials on an object
layout(buffer_reference, scalar) buffer MatIndices {int i[]; }; // Material ID for each triangle
layout(binding = 0, set = 0) uniform accelerationStructureEXT topLevelAS;
layout(binding = 1, set = 1, scalar) buffer SceneDesc_ { SceneDesc i[]; } sceneDesc;
layout(binding = 2, set = 1) uniform sampler2D textureSamplers[];
// clang-format on
layout(push_constant) uniform Constants
{
vec4 clearColor;
vec3 lightPosition;
float lightIntensity;
int lightType;
}
pushC;
void main()
{
// Object data
SceneDesc objResource = sceneDesc.i[gl_InstanceCustomIndexEXT];
MatIndices matIndices = MatIndices(objResource.materialIndexAddress);
Materials materials = Materials(objResource.materialAddress);
Indices indices = Indices(objResource.indexAddress);
Vertices vertices = Vertices(objResource.vertexAddress);
// Indices of the triangle
ivec3 ind = indices.i[gl_PrimitiveID];
// Vertex of the triangle
Vertex v0 = vertices.v[ind.x];
Vertex v1 = vertices.v[ind.y];
Vertex v2 = vertices.v[ind.z];
const vec3 barycentrics = vec3(1.0 - attribs.x - attribs.y, attribs.x, attribs.y);
// Computing the normal at hit position
vec3 normal = v0.nrm * barycentrics.x + v1.nrm * barycentrics.y + v2.nrm * barycentrics.z;
// Transforming the normal to world space
normal = normalize(vec3(sceneDesc.i[gl_InstanceCustomIndexEXT].transfoIT * vec4(normal, 0.0)));
// Computing the coordinates of the hit position
vec3 worldPos = v0.pos * barycentrics.x + v1.pos * barycentrics.y + v2.pos * barycentrics.z;
// Transforming the position to world space
worldPos = vec3(sceneDesc.i[gl_InstanceCustomIndexEXT].transfo * vec4(worldPos, 1.0));
// Vector toward the light
vec3 L;
float lightIntensity = pushC.lightIntensity;
float lightDistance = 100000.0;
// Point light
if(pushC.lightType == 0)
{
vec3 lDir = pushC.lightPosition - worldPos;
lightDistance = length(lDir);
lightIntensity = pushC.lightIntensity / (lightDistance * lightDistance);
L = normalize(lDir);
}
else // Directional light
{
L = normalize(pushC.lightPosition - vec3(0));
}
// Material of the object
int matIdx = matIndices.i[gl_PrimitiveID];
WaveFrontMaterial mat = materials.m[matIdx];
// Diffuse
vec3 diffuse = computeDiffuse(mat, L, normal);
if(mat.textureId >= 0)
{
uint txtId = mat.textureId + sceneDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y + v2.texCoord * barycentrics.z;
diffuse *= texture(textureSamplers[nonuniformEXT(txtId)], texCoord).xyz;
}
vec3 specular = vec3(0);
float attenuation = 1;
// Tracing shadow ray only if the light is visible from the surface
if(dot(normal, L) > 0)
{
float tMin = 0.001;
float tMax = lightDistance;
vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
vec3 rayDir = L;
uint flags = gl_RayFlagsSkipClosestHitShaderEXT;
prdShadow.isHit = true;
prdShadow.seed = prd.seed;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask
0, // sbtRecordOffset
0, // sbtRecordStride
1, // missIndex
origin, // ray origin
tMin, // ray min range
rayDir, // ray direction
tMax, // ray max range
1 // payload (location = 1)
);
prd.seed = prdShadow.seed;
if(prdShadow.isHit)
{
attenuation = 0.3;
}
else
{
// Specular
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, normal);
}
}
prd.hitValue = vec3(lightIntensity * attenuation * (diffuse + specular));
}