\cdot zu \bullet geändert
This commit is contained in:
parent
bce8db5665
commit
62b1f74686
3 changed files with 37 additions and 37 deletions
|
|
@ -100,8 +100,8 @@ aussehen können.
|
|||
wir nun allgemein eine Kategorie $\mathscr{C}$ und ein Diagramm $\mathcal{F}: \mathscr{C}\mapsto I$.
|
||||
Dann gilt $\text{Kegel}_{\mathscr{C}}(I)=$
|
||||
\begin{tikzpicture}[baseline=4mm]
|
||||
\node (1)[blue] at (0,1) {$\cdot$};
|
||||
\node (2) at (0,0) {$\cdot$};
|
||||
\node (1)[blue] at (0,1) {$\bullet$};
|
||||
\node (2) at (0,0) {$\bullet$};
|
||||
\draw
|
||||
(1) edge[blue] (2)
|
||||
;
|
||||
|
|
@ -117,8 +117,8 @@ aussehen können.
|
|||
\centering
|
||||
\begin{tikzpicture}
|
||||
\node (Fi) at (0,0) {$\mathcal{F}(i)$};
|
||||
\node (L)[red] at (0,2){$\cdot$};
|
||||
\node (K)[blue] at (1,1){$\cdot$};
|
||||
\node (L)[red] at (0,2){$\bullet$};
|
||||
\node (K)[blue] at (1,1){$\bullet$};
|
||||
|
||||
\draw
|
||||
(L) edge[red] (Fi)
|
||||
|
|
@ -134,7 +134,7 @@ aussehen können.
|
|||
\begin{tikzpicture}
|
||||
\node (Fi) at (0,0) {$\mathcal{F}(i)$};
|
||||
\node (L)[red] at (0,2){$\mathcal{F}(i)$};
|
||||
\node (K)[blue] at (2,2){$\cdot$};
|
||||
\node (K)[blue] at (2,2){$\bullet$};
|
||||
|
||||
\draw
|
||||
(L) edge[red] (Fi)
|
||||
|
|
@ -150,8 +150,8 @@ aussehen können.
|
|||
\begin{example}{Kategorie mit zwei Objekten\\}
|
||||
Es sei I=
|
||||
\begin{tikzpicture}[baseline=-1mm]
|
||||
\node(A) at (0,0){$\cdot$};
|
||||
\node(B) at (0.5,0){$\cdot$};
|
||||
\node(A) at (0,0){$\bullet$};
|
||||
\node(B) at (0.5,0){$\bullet$};
|
||||
\node (center) at (0.25, 0){};
|
||||
|
||||
\draw (center) ellipse (0.5 and 0.25);
|
||||
|
|
@ -162,8 +162,8 @@ aussehen können.
|
|||
|
||||
|
||||
\begin{tikzpicture}
|
||||
\node (Fi) at (0,0) {$\cdot$};
|
||||
\node (Fj) at (3,0) {$\cdot$};
|
||||
\node (Fi) at (0,0) {$\bullet$};
|
||||
\node (Fj) at (3,0) {$\bullet$};
|
||||
\node [red] (L) at (1.5,1.5) {$L$};
|
||||
\node [blue] (K) at (1.5,3) {$K$};
|
||||
|
||||
|
|
@ -179,8 +179,8 @@ aussehen können.
|
|||
Für \cat{set}:\\
|
||||
gegeben $M,N$. Dann ist $\text{lim}\left(
|
||||
\begin{tikzpicture}[baseline=-1mm]
|
||||
\node(A) at (0,0){$\cdot$};
|
||||
\node(B) at (0.5,0){$\cdot$};
|
||||
\node(A) at (0,0){$\bullet$};
|
||||
\node(B) at (0.5,0){$\bullet$};
|
||||
\node (center) at (0.25, 0){};
|
||||
|
||||
\draw (center) ellipse (0.5 and 0.25);
|
||||
|
|
@ -267,8 +267,8 @@ aussehen können.
|
|||
Kokegel:
|
||||
\begin{tikzpicture}[baseline=5mm]
|
||||
\node[blue] (K) at (0, 0){$K_{co}$};
|
||||
\node (P1) at (-1, 1){$\cdot$};
|
||||
\node (P2) at (1, 1){$\cdot$};
|
||||
\node (P1) at (-1, 1){$\bullet$};
|
||||
\node (P2) at (1, 1){$\bullet$};
|
||||
\node (center) at (0,1){};
|
||||
|
||||
\draw
|
||||
|
|
@ -284,8 +284,8 @@ aussehen können.
|
|||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\node[red] (L) at (0, 0){$L_{co}$};
|
||||
\node (P1) at (-2, 2){$\cdot$};
|
||||
\node (P2) at (2, 2){$\cdot$};
|
||||
\node (P1) at (-2, 2){$\bullet$};
|
||||
\node (P2) at (2, 2){$\bullet$};
|
||||
\node (center) at (0,2){};
|
||||
\node[blue] (K) at (0, -1.5){$K_{co}$};
|
||||
|
||||
|
|
@ -332,8 +332,8 @@ aussehen können.
|
|||
\begin{example}
|
||||
{$I=$
|
||||
\begin{tikzpicture}[baseline=-1mm]
|
||||
\node (P1) at (0,0){$\cdot$};
|
||||
\node (P2) at (0.5,0){$\cdot$};
|
||||
\node (P1) at (0,0){$\bullet$};
|
||||
\node (P2) at (0.5,0){$\bullet$};
|
||||
\node (center) at (0.25,0){};
|
||||
\draw (center) ellipse (0.5 and 0.25);
|
||||
\end{tikzpicture}
|
||||
|
|
@ -414,9 +414,9 @@ aussehen können.
|
|||
\begin{definition}{Pullback\\}
|
||||
Ein Pullback ist der Limes des Diagramms
|
||||
\begin{tikzpicture}[baseline=0mm]
|
||||
\node (A) at (0,0){$\cdot$};
|
||||
\node (B) at (1,0){$\cdot$};
|
||||
\node (C) at (1,1){$\cdot$};
|
||||
\node (A) at (0,0){$\bullet$};
|
||||
\node (B) at (1,0){$\bullet$};
|
||||
\node (C) at (1,1){$\bullet$};
|
||||
|
||||
\draw
|
||||
(A) edge (B)
|
||||
|
|
@ -427,9 +427,9 @@ aussehen können.
|
|||
\begin{figure}[h]
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\node (A) at (0,0){$\cdot$};
|
||||
\node (B) at (2,0){$\cdot$};
|
||||
\node (C) at (2,2){$\cdot$};
|
||||
\node (A) at (0,0){$\bullet$};
|
||||
\node (B) at (2,0){$\bullet$};
|
||||
\node (C) at (2,2){$\bullet$};
|
||||
\node[red] (L) at (0,2){$P$};
|
||||
\node[blue] (T) at (-1,3){$T$};
|
||||
|
||||
|
|
@ -507,9 +507,9 @@ aussehen können.
|
|||
\begin{definition}{Pushout\\}
|
||||
Ein Pushout ist der Kolimes des Diagramms
|
||||
\begin{tikzpicture}[baseline=-5mm]
|
||||
\node (X) at (0,0){$\cdot$};
|
||||
\node (V) at (0,-1){$\cdot$};
|
||||
\node (W) at (1,0){$\cdot$};
|
||||
\node (X) at (0,0){$\bullet$};
|
||||
\node (V) at (0,-1){$\bullet$};
|
||||
\node (W) at (1,0){$\bullet$};
|
||||
|
||||
\draw
|
||||
(X) edge (V)
|
||||
|
|
@ -520,9 +520,9 @@ aussehen können.
|
|||
\begin{figure}[h]
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\node (X) at (0,0){$\cdot$};
|
||||
\node (V) at (0,-2){$\cdot$};
|
||||
\node (W) at (2,0){$\cdot$};
|
||||
\node (X) at (0,0){$\bullet$};
|
||||
\node (V) at (0,-2){$\bullet$};
|
||||
\node (W) at (2,0){$\bullet$};
|
||||
\node[red] (P) at (2,-2){$P$};
|
||||
\node[blue] (T) at (3,-3){$T$};
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue