Pullback über KVR und Pushout definition

This commit is contained in:
CDaut 2022-10-16 00:19:14 +02:00 committed by CDaut
parent 2b3cbd0d83
commit 644cdd5a02
2 changed files with 94 additions and 3 deletions

View file

@ -430,7 +430,7 @@ aussehen können.
\node (A) at (0,0){$\cdot$}; \node (A) at (0,0){$\cdot$};
\node (B) at (2,0){$\cdot$}; \node (B) at (2,0){$\cdot$};
\node (C) at (2,2){$\cdot$}; \node (C) at (2,2){$\cdot$};
\node[red] (L) at (0,2){$L$}; \node[red] (L) at (0,2){$P$};
\node[blue] (T) at (-1,3){$T$}; \node[blue] (T) at (-1,3){$T$};
\draw \draw
@ -448,5 +448,96 @@ aussehen können.
\end{figure} \end{figure}
\end{definition} \end{definition}
\begin{example}{Pullback über der Kategorie \cat{K-VR}\\} \begin{example}{Pullback über der Kategorie \cat{K-VR}\\}
Damit $P$ ein Pullback ist, muss folgendes Diagramm kommutieren:\\
\end{example} \begin{center}
\begin{tikzpicture}
\node (V) at (0,0){$V$};
\node (X) at (2,0){$X$};
\node (W) at (2,2){$W$};
\node[red] (L) at (0,2){$P$};
\draw
(V) edge node[below]{$f_V$} (X)
(W) edge node[right]{$f_W$} (X)
(L) edge[red] node[left]{$\Pi_V$} (V)
(L) edge[red] node[above]{$\Pi_V$}(W)
;
\end{tikzpicture}
\end{center}
Mit $P:=\{(v,w)\in V\times W|f_V(v)=f_W(w)\}$\\
Es ist also zu zeigen, dass:
\begin{itemize}
\item P ein $\mathbb{K}$-Vektorraum ist
\item P Limes über dem Diagramm ist
\end{itemize}
$P$ ist $\mathbb{K}$-Vektorraum:\\
$(v,w)+(\tilde{v},\tilde{w})=(v+\tilde{v},w+\tilde{w})$\\
$f_V(v+\tilde{v})=f_V(v)+f_V(\tilde{v})=f_W(w)+f_W(\tilde{w})=f_W(w+\tilde{w})$\\
$\implies P$ ist $\mathbb{K}$-Vektorraum.\\
P ist ein Limes:
Da $P$ Morphismen auf alle Objekte im Bild des Diagramms hat, ist $P$ ein Kegel.\\
Betrachte folgendes Diagramm:
\begin{center}
\begin{tikzpicture}
\node (V) at (0,0){$V$};
\node (X) at (2,0){$X$};
\node (W) at (2,2){$W$};
\node[red] (P) at (0,2){$P$};
\node[blue] (T) at (-1,3){$T$};
\draw
(V) edge node[below]{$f_V$}(X)
(W) edge node[right]{$f_W$} (X)
(P) edge[red] node[left]{$\Pi_V$}(V)
(P) edge[red] node[above]{$\Pi_W$} (W)
(T) edge[dotted] node[above]{$\varphi$} (P)
(T) edge[blue, bend right] node[left]{$g_V$} (V)
(T) edge[blue, bend left] node[above]{$g_W$} (W)
;
\end{tikzpicture}
\end{center}
Wir müssen also ein $\varphi$ definieren, sodass $\varphi\circ\Pi_V=g_V$ und
$\varphi\circ\Pi_W=g_W$ gilt und das Diagramm kommutiert.\\
Definiere dazu $\varphi:T\mapsto P$ als $t\mapsto (g_V(t),g_W(t))$\\
$\implies P$ ist Limes.\\
Da $P$ ein Vektorraum und Limes über dem Pullbackdiagramm ist, ist $P$ Pullback über \cat{K-VR}.
\qed
\end{example}
\begin{definition}{Pushout\\}
Ein Pushout ist der Kolimes des Diagramms
\begin{tikzpicture}[baseline=-5mm]
\node (X) at (0,0){$\cdot$};
\node (V) at (0,-1){$\cdot$};
\node (W) at (1,0){$\cdot$};
\draw
(X) edge (V)
(X) edge (W)
;
\end{tikzpicture}.
Also ein Kolimes, sodass folgendes Diagramm kommutiert:\\
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}
\node (X) at (0,0){$\cdot$};
\node (V) at (0,-2){$\cdot$};
\node (W) at (2,0){$\cdot$};
\node[red] (P) at (2,-2){$P$};
\node[blue] (T) at (3,-3){$T$};
\draw
(X) edge (V)
(X) edge (W)
(V) edge[red] (P)
(W) edge[red] (P)
(V) edge[blue, bend right] (T)
(W) edge[blue, bend left] (T)
(P) edge[dotted] (T)
;
\end{tikzpicture}
\end{center}
\caption{Das kommutative Diagramm für einen Pushout.}
\end{figure}
\end{definition}

BIN
main.pdf

Binary file not shown.