Beispiele für Kegel
This commit is contained in:
parent
1c7ffd5705
commit
75a6c99d3f
2 changed files with 58 additions and 1 deletions
|
|
@ -148,5 +148,62 @@ aussehen können.
|
|||
\end{center}
|
||||
\end{example}
|
||||
\begin{example}{Kategorie mit zwei Objekten\\}
|
||||
Es sei I=
|
||||
\begin{tikzpicture}[baseline=-1mm]
|
||||
\node(A) at (0,0){$\cdot$};
|
||||
\node(B) at (0.5,0){$\cdot$};
|
||||
\node (center) at (0.25, 0){};
|
||||
|
||||
\draw (center) ellipse (0.5 and 0.25);
|
||||
\end{tikzpicture}
|
||||
eine kleine Kategorie. Dann suchen wir einen Limes $L$, sodass für alle Kegel
|
||||
folgendes Diagramm kommutiert:\\
|
||||
\begin{center}
|
||||
|
||||
|
||||
\begin{tikzpicture}
|
||||
\node (Fi) at (0,0) {$\cdot$};
|
||||
\node (Fj) at (3,0) {$\cdot$};
|
||||
\node [red] (L) at (1.5,1.5) {$L$};
|
||||
\node [blue] (K) at (1.5,3) {$K$};
|
||||
|
||||
\draw
|
||||
(L) edge[red] (Fi)
|
||||
(L) edge[red] (Fj)
|
||||
(K) edge[blue, bend right] (Fi)
|
||||
(K) edge[blue, bend left] (Fj)
|
||||
(K) edge[dotted] (L)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Für \cat{set}:\\
|
||||
gegeben $M,N$. Dann ist $\text{lim}\left(
|
||||
\begin{tikzpicture}[baseline=-1mm]
|
||||
\node(A) at (0,0){$\cdot$};
|
||||
\node(B) at (0.5,0){$\cdot$};
|
||||
\node (center) at (0.25, 0){};
|
||||
|
||||
\draw (center) ellipse (0.5 and 0.25);
|
||||
\end{tikzpicture}
|
||||
\right):=$ Produkt.\\
|
||||
\begin{center}
|
||||
|
||||
|
||||
\begin{tikzpicture}
|
||||
\node (M) at (0,0) {$M$};
|
||||
\node (N) at (3,0) {$N$};
|
||||
\node [red] (L) at (1.5,1.5) {$M\times N$};
|
||||
\node [blue] (K) at (1.5,3) {$T$};
|
||||
|
||||
\draw
|
||||
(L) edge[red] node[left]{$\Pi_M$} (Fi)
|
||||
(L) edge[red] node[right]{$\Pi_N$} (Fj)
|
||||
(K) edge[blue, bend right] node[left]{$f_M$} (M)
|
||||
(K) edge[blue, bend left] node[right]{$f_N$} (N)
|
||||
(K) edge[dotted] (L)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Wobei T hier ein Testobjekt aus \cat{set}, $\Pi_M((m,n))=m$ und der Morphismus $T\mapsto M\times N$
|
||||
definiert ist als $t\mapsto (f_M(t),f_N(t))$. Analog funktionieren die Limiten für \cat{Grp} und \cat{K-VR}.
|
||||
\end{example}
|
||||
BIN
main.pdf
BIN
main.pdf
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue