more examples
This commit is contained in:
parent
66a2fc6de2
commit
a765a7fc38
3 changed files with 69 additions and 0 deletions
|
|
@ -261,4 +261,72 @@ zu können und diese so in Relation zu setzen definieren wir Funktoren.
|
|||
$\\
|
||||
Man schränkt den Ring also auf alle invertierbaren Ringelemente ein und
|
||||
lässt nur noch die Abbildungen übrig, die ohnehin schon zwischen invertierbaren Elementen abgebildet haben.
|
||||
\end{example}
|
||||
\begin{example}{$\cat{Set}\mapsto\cat{K-VR}$\\}
|
||||
Definiere\\
|
||||
$M\mapsto \text{Abb}_0(M,\mathbb{K})=\{\text{Abb } M\mapsto\mathbb{K} \text{ fast überall } 0\}$ (Freier Vektorraum über M)\\
|
||||
$\mathcal{F}(M):=\left\{\displaystyle\sum_{m\in M}\lambda_m\cdot m|\lambda_m=0\text{ ffa } m\in M, \lambda_m\in\mathbb{K}\right\}$\\
|
||||
\begin{center}%TDOD: Fix tikz picture
|
||||
\begin{tikzpicture}[every edge/.style = {draw, -to}]
|
||||
\node(M) at (0,0){$M$};
|
||||
\node(N) at (0,-2){$N$};
|
||||
\node(FM) at (2,0){$\mathcal{F}(M)$};
|
||||
\node(FN) at (2,-2){$\mathcal{F}(N)$};
|
||||
\node(Fg) at (4,0){$\sum\lambda_m\cdot m$};
|
||||
\node(FFg) at (4,-2){$\sum\lambda_m\cdot f(m)$};
|
||||
|
||||
\path
|
||||
(M) edge node[right]{f} (N)
|
||||
(FM) edge (FN)
|
||||
(Fg) edge (FFg)
|
||||
;
|
||||
\draw[decorate,decoration={brace, mirror}] (M.north west) -- (N.south west);
|
||||
\draw[decorate,decoration={brace}] (M.north east) -- (N.south east);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\begin{example}{$\cat{Grp}\mapsto\cat{Ab}$ (Abelisierung)\\}
|
||||
$G\mapsto G^{ab}=G_{/H}$ mit $H=\langle\langle\{h_1h_2h_1^{-1}h_2^{-1}|h_1,h_2\in G\}\rangle\rangle$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[every edge/.style = {draw, -to}]
|
||||
\node (G1) at (0,0){$G_1$};
|
||||
\node (G2) at (0, -2){$G_2$};
|
||||
\node (G1ab) at (2,0){$G_1^{ab}$};
|
||||
\node (G2ab) at (2,-2){$G_2^{ab}$};
|
||||
|
||||
\path
|
||||
(G1) edge node[right](Lphi){$\phi$} (G2)
|
||||
(G1ab) edge node[left](Rphi){} node[right]{$\phi$} (G2ab)
|
||||
(Lphi) edge (Rphi)%TODO: make this edge a mapsto
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{example}
|
||||
\begin{example}{Graphen\\}
|
||||
Definiere $\cat{Grph}$ exemplarisch als folgende Kategorie:
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[every edge/.style = {draw, -to}]
|
||||
\node (E) at (0,0){E $\cdot$};
|
||||
\node (V) at (3,0){$\cdot$ V};
|
||||
|
||||
\path
|
||||
(E) edge node[above]{$s,t,u,\dots$} (V)
|
||||
(E) edge[loop] (E)
|
||||
(V) edge[loop] (V)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Dann gibt es Funktoren $\mathcal{F}: \cat{Grph}\mapsto\cat{Set}$ mit
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[every edge/.style = {draw, -to}]
|
||||
\node (E) at (0,0){$\mathcal{F}(E)$ $\cdot$};
|
||||
\node (V) at (6,0){$\cdot$ $\mathcal{F}(V)$};
|
||||
|
||||
\path
|
||||
(E) edge node[above]{$\mathcal{F}(s),\mathcal{F}(t),\mathcal{F}(u),\dots$} (V)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Diese Funktoren bilden Graphen auf ihre Knoten- und Kantenmengendarstellung ab.
|
||||
\end{example}
|
||||
Loading…
Add table
Add a link
Reference in a new issue