diff --git a/handout/handout.tex b/handout/handout.tex index ee75998..08b740b 100644 --- a/handout/handout.tex +++ b/handout/handout.tex @@ -76,13 +76,13 @@ Differentiable ray tracing is the task of calculating the gradient of this proce \section{Problems with differentiability} The geometry term $g(x,x^\prime)$ in equation \ref{eq:rendering_integral} is the main problem when it comes do differentiating the rendering integral. This term is 1 iff $x$ is visible from $x^\prime$, 0 otherwise. -\begin{figure} +\begin{figure}[h] \centering \include{handout/diagrams/diagramm_occlusion} - \caption{Caption} - \label{fig:enter-label} + \caption{A simple occlusion scenario. An infinitesimal change in ray angle $d\omega$ is sufficient to determine whether the wall is visible or not.} + \label{fig:occlusion_rays} \end{figure} - +As illustrated in figure \ref{fig:occlusion_rays} an infinitesimal angle change $d\omega$ can lead to the blocker obstructing the wall or the wall being visible. The geometry term is thus a Heaviside step function which when differentiated yields a dirac delta functional. % BIBLIOGRAPHY \nocite{*} % List all entries of the .bib file, even those not cited in the main body \printbibliography