Update on Overleaf.
This commit is contained in:
parent
6e5dc2319c
commit
87e71fb35c
9 changed files with 131 additions and 201 deletions
|
|
@ -1,10 +1,10 @@
|
|||
\section{Motivation~-~why differentiable rendering is important}
|
||||
\begin{frame}
|
||||
\centering
|
||||
\Huge
|
||||
Motivation~-~why differentiable rendering is important
|
||||
\end{frame}
|
||||
\begin{frame}{Importance of differentiable rendering}
|
||||
\section{Motivation~-~Why differentiable Rendering is important}
|
||||
% \begin{frame}
|
||||
% \centering
|
||||
% \Huge
|
||||
% Motivation~-~Why differentiable Rendering is important
|
||||
% \end{frame}
|
||||
\begin{frame}{Importance of differentiable Rendering}
|
||||
\begin{block}{Examples for Applications}
|
||||
\begin{itemize}
|
||||
\item Learning-based Inverse Rendering of Complex Indoor Scenes
|
||||
|
|
@ -19,8 +19,8 @@ with Differentiable Monte Carlo Raytracing [\cite{ACM:inverse_rendering}]\\
|
|||
\end{itemize}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
\subsection{Inverse rendering}
|
||||
\begin{frame}{Inverse rendering}
|
||||
\subsection{Inverse Rendering}
|
||||
\begin{frame}{Inverse Rendering}
|
||||
\begin{itemize}
|
||||
\item Conventional rendering: Synthesize an Image from a 3D scene
|
||||
\item Inverse problem: Synthesize a 3D scene from images
|
||||
|
|
@ -36,7 +36,7 @@ with Differentiable Monte Carlo Raytracing [\cite{ACM:inverse_rendering}]\\
|
|||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}{Inverse rendering~-~current example}
|
||||
\begin{frame}{Inverse Rendering~-~Current Example}
|
||||
\centering
|
||||
\includemedia[
|
||||
width=0.62\linewidth,height=0.35\linewidth,
|
||||
|
|
@ -54,12 +54,12 @@ with Differentiable Monte Carlo Raytracing [\cite{ACM:inverse_rendering}]\\
|
|||
|
||||
Source:~\cite{ACM:inverse_rendering_signed_distance_function}
|
||||
\end{frame}
|
||||
\subsection{Adversarial image generation}
|
||||
\begin{frame}{Adversarial image generation}
|
||||
\subsection{Adversarial Image Generation}
|
||||
\begin{frame}{Adversarial Image Generation}
|
||||
\begin{center}
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
\begin{itemize}
|
||||
\item Common Problem in machine learning: Classification\\
|
||||
\item Common problem in machine learning: Classification\\
|
||||
$\implies$ Given a set of labels and a set of data, assign a label to each element in the dataset
|
||||
\item Labeled data is needed to train classifier network
|
||||
\end{itemize}
|
||||
|
|
@ -73,7 +73,7 @@ with Differentiable Monte Carlo Raytracing [\cite{ACM:inverse_rendering}]\\
|
|||
\end{minipage}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
\begin{frame}{Adversarial image generation}
|
||||
\begin{frame}{Adversarial Image Generation}
|
||||
\begin{itemize}
|
||||
\item Problem: Labeling training data is tedious\\
|
||||
$\implies$ We want to automatically generate training data
|
||||
|
|
@ -84,7 +84,7 @@ with Differentiable Monte Carlo Raytracing [\cite{ACM:inverse_rendering}]\\
|
|||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Adversarial image generation~-~example [\cite{DBLP:journals/corr/abs-1910-00727}]}
|
||||
\begin{frame}{Adversarial Image Generation~-~Example [\cite{DBLP:journals/corr/abs-1910-00727}]}
|
||||
\begin{center}
|
||||
\begin{figure}
|
||||
\begin{minipage}{0.45\linewidth}
|
||||
|
|
@ -96,8 +96,8 @@ with Differentiable Monte Carlo Raytracing [\cite{ACM:inverse_rendering}]\\
|
|||
\includegraphics[width=\linewidth]{img/adversarial_rendering_results/incorrect_pedestrian.png}
|
||||
\end{minipage}
|
||||
\centering
|
||||
\caption{Left: Original images, features are correctly identified.\\
|
||||
Right: adversarial examples, missing/wrong identifications after only semantic changes}
|
||||
\caption{Left: Original images, features are correctly identified\\
|
||||
Right: Adversarial examples, missing/wrong identifications after only semantic changes}
|
||||
\label{fig:adv_img_example}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue