Update on Overleaf.
This commit is contained in:
commit
cd463f4a54
56 changed files with 1974 additions and 0 deletions
137
presentation/modules/problems.tex
Normal file
137
presentation/modules/problems.tex
Normal file
|
|
@ -0,0 +1,137 @@
|
|||
\section{Problems}
|
||||
\begin{frame}
|
||||
\centering
|
||||
\Huge
|
||||
Problems
|
||||
\end{frame}
|
||||
\subsection{Why differentiable rendering is hard}
|
||||
\begin{frame}{Why differentiable rendering is hard}
|
||||
\begin{itemize}
|
||||
\item Rendering integral contains the geometry term that is not differentiable
|
||||
\item The gradiant of the visibility can lead to dirac delta terms which have 0 probability of being sampled correctly [\cite{ACM:diracdelta},\cite{ACM:diffable_raytracing}]
|
||||
\item Differentiation with respect to certain scene parameters possible but we need to differentiate with respect to any scene parameter
|
||||
\end{itemize}
|
||||
\pause
|
||||
\begin{center}
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{tikzpicture}[domain=-0.5:2]
|
||||
\draw[very thin,color=gray] (-0.1,-0.6) grid (2.1,2.1);
|
||||
|
||||
\draw[->] (-0.2,-0.5) -- (2.2,-0.5) node[right] {$\omega$};
|
||||
\draw[->] (0,-0.7) -- (0,2.2) node[above] {$V(x,\omega)$};
|
||||
|
||||
\draw (0,0) -- (1,0) plot coordinates {(0,0) (1,0)}[color=red];
|
||||
\draw (1,1) -- (2,1) plot coordinates {(1,1) (2,1)}[color=red];
|
||||
\draw (0,0) node[left] {$0$};
|
||||
\draw (0,1) node[left] {$1$};
|
||||
\draw (1,-0.7) node[below] {$\omega_0$};
|
||||
\end{tikzpicture}
|
||||
\end{minipage}
|
||||
\hspace{3mm}
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
\caption{Visibility of a point $x$ with respect to $\omega$. Observe the discontinuity at $\omega_0$.}
|
||||
\label{fig:visibility}
|
||||
\end{minipage}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
% second diagram
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{tikzpicture}[domain=-0.5:2]
|
||||
\draw[very thin,color=gray] (-0.1,-0.6) grid (2.1,2.1);
|
||||
|
||||
\draw[->] (-0.2,-0.5) -- (2.2,-0.5) node[right] {$\omega$};
|
||||
\draw[->] (0,-0.7) -- (0,2.2) node[above] {$\frac{\partial}{\partial\omega}V(x,\omega)$};
|
||||
|
||||
\draw (0,0) -- (2,0) plot coordinates {(0,0) (2,0)}[color=red];
|
||||
\draw (0,0) node[left] {$0$};
|
||||
\draw (0,1) node[left] {$1$};
|
||||
\draw (0,2) node[left] {$\infty$};
|
||||
\draw (1,2) node[color=red] {$\bullet$};
|
||||
\draw (1,-0.7) node[below] {$\omega_0$};
|
||||
\end{tikzpicture}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
\caption{Differentiation of the left graph with respect to $\omega$. Observe the discontinuity at $\omega_0$ in the left graph leading to a dirac delta spike at $\omega_0$ in the differentiation.}
|
||||
\label{fig:dirac-delta-spike}
|
||||
\end{minipage}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
\begin{frame}{Geometry term}
|
||||
\centering
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
\includegraphics[width=\linewidth]{presentation/img/blockers.png}
|
||||
\end{minipage}
|
||||
\hspace{15mm}
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
\includegraphics[width=\linewidth]{presentation/img/blockers_diff.png}
|
||||
\end{minipage}
|
||||
\end{frame}
|
||||
\subsection{Former methods}
|
||||
\begin{frame}{Former methods}
|
||||
\begin{block}{Previous differentiable renderers considered by this paper}
|
||||
\begin{itemize}
|
||||
\item OpenDR [\cite{DBLP:OpenDR}]
|
||||
\item Neural 3D Mesh Renderer [\cite{DBLP:Neural3DKatoetal}]
|
||||
\item Both rasterization based (first render the image using rasterization, then approximate the gradients using the resulting color buffer)
|
||||
\item Focused on speed rather than precision
|
||||
\end{itemize}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
\begin{frame}{Former methods - visualization}
|
||||
\begin{figure}
|
||||
\begin{minipage}{0.12\linewidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{presentation/img/comparisons/plane.png}
|
||||
\caption{planar scene}
|
||||
\label{fig:planar-scene}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\hspace{2mm}
|
||||
\begin{minipage}{0.12\linewidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{presentation/img/comparisons/opendr.png}
|
||||
\caption{OpenDR}
|
||||
\label{fig:grad-OpenDR}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\hspace{2mm}
|
||||
\begin{minipage}{0.12\linewidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{presentation/img/comparisons/Neural.png}
|
||||
\caption{Neural}
|
||||
\label{fig:grad-Neural3DMesh}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\hspace{2mm}
|
||||
\begin{minipage}{0.12\linewidth}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{presentation/img/comparisons/ours.png}
|
||||
\caption{this paper}
|
||||
\label{fig:grad-this}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\hspace{4mm}
|
||||
\begin{minipage}{0.3\linewidth}
|
||||
\caption{
|
||||
%A plane lit by a point light source. Images visualize a gradient with respect to the plane moving right. Since the light source remains static the gradient should only be $\ne 0$ at the boundaries. OpenDR and Neural are not able to correctly calculate the gradients as they are based on color buffer differences.\\
|
||||
Visualizations of gradients calculated by different differentiable renderers.\\
|
||||
Images: \cite{ACM:diffable_raytracing}
|
||||
}
|
||||
\label{fig:grad-explanation}
|
||||
\end{minipage}
|
||||
\end{figure}
|
||||
\pause
|
||||
$\implies$ Problems are caused at the edges and by approximation using color buffers
|
||||
\end{frame}
|
||||
Loading…
Add table
Add a link
Reference in a new issue