\section{Motivation~-~Why differentiable Rendering is important} % \begin{frame} % \centering % \Huge % Motivation~-~Why differentiable Rendering is important % \end{frame} \begin{frame}{Importance of differentiable Rendering} \begin{block}{Examples for Applications} \begin{itemize} \item Learning-based Inverse Rendering of Complex Indoor Scenes with Differentiable Monte Carlo Raytracing [\cite{ACM:inverse_rendering}]\\ $\rightarrow$ Inverse rendering \item Generating Semantic Adversarial Examples with Differentiable Rendering [\cite{DBLP:journals/corr/abs-1910-00727}]\\ $\rightarrow$ Machine learning \item Real-Time Lighting Estimation for Augmented Reality [\cite{IEEE:AR_lighting_estimation}]\\ $\rightarrow$ Realistic real time shading for AR applications \item Acoustic Camera Pose Refinement [\cite{IEEE:Ac_cam_refinment}]\\ $\rightarrow$ Optimize six degrees of freedom for acoustic underwater cameras \end{itemize} \end{block} \end{frame} \subsection{Inverse Rendering} \begin{frame}{Inverse Rendering} \begin{itemize} \item Conventional rendering: Synthesize an Image from a 3D scene \item Inverse problem: Synthesize a 3D scene from images %\item 3D modelling can be hard and time consuming \item Approach: \begin{itemize} \item Approximate the 3D scene \item Render the approximation differentiably \item Calculate the error \item Use a gradient descent algorithm to minimize this error \end{itemize} \end{itemize} \end{frame} \begin{frame}{Inverse Rendering~-~Current Example} \centering \includemedia[ width=0.62\linewidth,height=0.35\linewidth, activate=onclick, addresource=proseminar_chair.mp4, playbutton=fancy, transparent, passcontext, flashvars={ source=proseminar_chair.mp4 &autoPlay=true } ]{}{VPlayer.swf} \\ Source:~\cite{ACM:inverse_rendering_signed_distance_function} \end{frame} \subsection{Adversarial Image Generation} \begin{frame}{Adversarial Image Generation} \begin{center} \begin{minipage}{0.4\linewidth} \begin{itemize} \item Common problem in machine learning: Classification\\ $\implies$ Given a set of labels and a set of data, assign a label to each element in the dataset \item Labeled data is needed to train classifier network \end{itemize} \pause{} \vspace{15mm} Image source: Auth0, \href{https://auth0.com/blog/captcha-can-ruin-your-ux-here-s-how-to-use-it-right/}{CAPTCHA Can Ruin Your UX. Here’s How to Use it Right} \end{minipage} \begin{minipage}{0.5\linewidth} \centering \includegraphics[width=0.5\linewidth]{img/recaptcha_example.png} \end{minipage} \end{center} \end{frame} \begin{frame}{Adversarial Image Generation} \begin{itemize} \item Problem: Labeling training data is tedious\\ $\implies$ We want to automatically generate training data \item One solution: Generative adversarial networks (e.g. AutoGAN [\cite{DBLP:AutoGAN}]).\\ $\implies$ Impossible to make semantic changes to the image \item Different solution: Use differentiable raytracing\\ $\implies$ Scene parameters can be manipulated \end{itemize} \end{frame} \begin{frame}{Adversarial Image Generation~-~Example [\cite{DBLP:journals/corr/abs-1910-00727}]} \begin{center} \begin{figure} \begin{minipage}{0.45\linewidth} \includegraphics[width=\linewidth]{img/adversarial_rendering_results/correct_car.png} \includegraphics[width=\linewidth]{img/adversarial_rendering_results/correct_pedestrian.png} \end{minipage} \begin{minipage}{0.45\linewidth} \includegraphics[width=\linewidth]{img/adversarial_rendering_results/incorrect_car.png} \includegraphics[width=\linewidth]{img/adversarial_rendering_results/incorrect_pedestrian.png} \end{minipage} \centering \caption{Left: Original images, features are correctly identified\\ Right: Adversarial examples, missing/wrong identifications after only semantic changes} \label{fig:adv_img_example} \end{figure} \end{center} \end{frame}