\section{Problems} \begin{frame} \centering \Huge Problems \end{frame} \subsection{Why differentiable rendering is hard} \begin{frame}{Why differentiable rendering is hard} \begin{itemize} \item Rendering integral contains the geometry term that is not differentiable \item The gradiant of the visibility can lead to dirac delta terms which have 0 probability of being sampled correctly [\cite{ACM:diracdelta},\cite{ACM:diffable_raytracing}] \item Differentiation with respect to certain scene parameters possible but we need to differentiate with respect to any scene parameter \end{itemize} \end{frame} \begin{frame}{Geometry term} \centering \input{presentation/diagrams/diagramm_occlusion.tex} \end{frame} \subsection{Former methods} \begin{frame}{Former methods} \begin{block}{Previous differentiable renderers considered by this paper} \begin{itemize} \item OpenDR [\cite{DBLP:OpenDR}] \item Neural 3D Mesh Renderer [\cite{DBLP:Neural3DKatoetal}] \item Both rasterization based (first render the image using rasterization, then approximate the gradients using the resulting color buffer) \item Focused on speed rather than precision \end{itemize} \end{block} \end{frame} \begin{frame}{Former methods - visualization} \begin{figure} \begin{minipage}{0.12\linewidth} \begin{figure} \centering \includegraphics[width=\linewidth]{presentation/img/comparisons/plane.png} \caption{planar scene} \label{fig:planar-scene} \end{figure} \end{minipage} \hspace{2mm} \begin{minipage}{0.12\linewidth} \begin{figure} \centering \includegraphics[width=\linewidth]{presentation/img/comparisons/opendr.png} \caption{OpenDR} \label{fig:grad-OpenDR} \end{figure} \end{minipage} \hspace{2mm} \begin{minipage}{0.12\linewidth} \begin{figure} \centering \includegraphics[width=\linewidth]{presentation/img/comparisons/Neural.png} \caption{Neural} \label{fig:grad-Neural3DMesh} \end{figure} \end{minipage} \hspace{2mm} \begin{minipage}{0.12\linewidth} \begin{figure} \centering \includegraphics[width=\linewidth]{presentation/img/comparisons/ours.png} \caption{this paper} \label{fig:grad-this} \end{figure} \end{minipage} \hspace{4mm} \begin{minipage}{0.3\linewidth} \caption{ %A plane lit by a point light source. Images visualize a gradient with respect to the plane moving right. Since the light source remains static the gradient should only be $\ne 0$ at the boundaries. OpenDR and Neural are not able to correctly calculate the gradients as they are based on color buffer differences.\\ Visualizations of gradients calculated by different differentiable renderers.\\ Images: \cite{ACM:diffable_raytracing} } \label{fig:grad-explanation} \end{minipage} \end{figure} \pause $\implies$ Problems are caused at the edges and by approximation using color buffers \end{frame}