\section{Motivation - why differentiable rendering is important} \begin{frame} \centering \Huge Motivation - why differentiable rendering is important \end{frame} \begin{frame}{Importance of differentiable rendering} \begin{block}{Examples for Applications} \begin{itemize} \item Learning-based Inverse Rendering of Complex Indoor Scenes with Differentiable Monte Carlo Raytracing [\cite{ACM:inverse_rendering}]\\ $\rightarrow$ Inverse rendering \item Generating Semantic Adversarial Examples with Differentiable Rendering [\cite{DBLP:journals/corr/abs-1910-00727}]\\ $\rightarrow$ Machine learning \item Real-Time Lighting Estimation for Augmented Reality [\cite{IEEE:AR_lighting_estimation}]\\ $\rightarrow$ Realistic real time shading for AR applications \item Acoustic Camera Pose Refinement [\cite{IEEE:Ac_cam_refinment}]\\ $\rightarrow$ Optimize six degrees of freedom for acoustic underwater cameras \end{itemize} \end{block} \end{frame} \subsection{Inverse rendering} \begin{frame}{Inverse rendering} \begin{itemize} \item Conventional rendering: Synthesize an Image from a 3D scene \item Inverse rendering is solving the inverse problem: Synthesize a 3D scene from images \item 3D modelling can be hard and time consuming \item Approach: \begin{itemize} \item Approximate the 3D scene (often very coarse) \item Render the approximation differentiably \item Calculate the error between the render and the images \item Use ADAM or comparable gradient descent algorithm to minimize this error \end{itemize} \end{itemize} \end{frame} \begin{frame}{Inverse rendering - current example} \centering \includemedia[ width=0.62\linewidth,height=0.35\linewidth, activate=onclick, addresource=proseminar_chair.mp4, playbutton=fancy, transparent, passcontext, flashvars={ source=proseminar_chair.mp4 &autoPlay=true } ]{}{VPlayer.swf} \\ Source: \cite{ACM:inverse_rendering_signed_distance_function} \end{frame} \subsection{Adversarial image generation} \begin{frame}{Adversarial image generation} \begin{center} \begin{minipage}{0.4\linewidth} \begin{itemize} \item Common Problem in machine learning: Classification\\ $\implies$ Given a set of labels and a set of data, assign a label to each element in the dataset \item Labeled data is needed to train classifier network \end{itemize} \pause \vspace{15mm} Image source: Auth0, \href{https://auth0.com/blog/captcha-can-ruin-your-ux-here-s-how-to-use-it-right/}{CAPTCHA Can Ruin Your UX. Here’s How to Use it Right} \end{minipage} \begin{minipage}{0.5\linewidth} \centering \includegraphics[width=0.5\linewidth]{presentation/img/recaptcha_example.png} \end{minipage} \end{center} \end{frame} \begin{frame}{Adversarial image generation} \begin{itemize} \item Problem: Labeling training data is tedious and expensive\\ $\implies$ We want to automatically generate training data \item One solution: Generative adversarial networks. Let two neural nets "compete"; a generator and a classifier. (e.g. AutoGAN [\cite{DBLP:AutoGAN}])\\ $\implies$ Impossible to make semantic changes to the image (e.g. lighting) since no knowlege of the 3D scene exists \item Different solution: Generate image using differentiable raytracing, use gradient descent to optimize the result image to fall into a specific class\\ $\implies$ Scene parameters can be manipulated \end{itemize} \end{frame} \begin{frame}{Adversarial image generation - example [\cite{DBLP:journals/corr/abs-1910-00727}]} \begin{center} \begin{figure} \begin{minipage}{0.45\linewidth} \includegraphics[width=\linewidth]{presentation/img/adversarial_rendering_results/correct_car.png} \includegraphics[width=\linewidth]{presentation/img/adversarial_rendering_results/correct_pedestrian.png} \end{minipage} \begin{minipage}{0.45\linewidth} \includegraphics[width=\linewidth]{presentation/img/adversarial_rendering_results/incorrect_car.png} \includegraphics[width=\linewidth]{presentation/img/adversarial_rendering_results/incorrect_pedestrian.png} \end{minipage} \centering \caption{Left: Original images, features are correctly identified.\\ Right: adversarial examples, silver car is not recognized and pedestrians are identified where there are none. Only semantic features (color, position, rotation) have been changed.} \label{fig:adv_img_example} \end{figure} \end{center} \end{frame}