80 lines
No EOL
3.4 KiB
TeX
80 lines
No EOL
3.4 KiB
TeX
\section{Problems}
|
|
% \begin{frame}
|
|
% \centering
|
|
% \Huge
|
|
% Problems
|
|
% \end{frame}
|
|
\subsection{Why differentiable Rendering is hard}
|
|
\begin{frame}{Why differentiable Rendering is hard}
|
|
\begin{itemize}
|
|
\item Geometry term
|
|
\item Causes dirac delta terms\\
|
|
$\implies$ Have 0 probability of being sampled correctly [\cite{ACM:diracdelta},\cite{ACM:diffable_raytracing}]
|
|
%\item Differentiation with respect to certain scene parameters possible but we need to differentiate with respect to any scene parameter
|
|
\item Need to differentiate with respect to any scene parameter
|
|
\end{itemize}
|
|
\end{frame}
|
|
\begin{frame}{Primary Occlusion}
|
|
\centering
|
|
\input{diagrams/diagramm_occlusion.tex}
|
|
\end{frame}
|
|
\begin{frame}{Angle change $\leftrightarrow$ Visibility change}
|
|
\centering
|
|
\input{diagrams/geometry_term_diff.tex}
|
|
\end{frame}
|
|
\subsection{Former Methods}
|
|
\begin{frame}{Former Methods}
|
|
\begin{block}{Previous differentiable renderers considered by this paper}
|
|
\begin{itemize}
|
|
\item OpenDR [\cite{DBLP:OpenDR}]
|
|
\item Neural 3D Mesh Renderer [\cite{DBLP:Neural3DKatoetal}]
|
|
\item Both rasterization based %(first render the image using rasterization, then approximate the gradients using the resulting color buffer)
|
|
\item Focused on speed $\rightarrow$ impercise
|
|
\end{itemize}
|
|
\end{block}
|
|
\end{frame}
|
|
\begin{frame}{Former Methods~-~Visualization}
|
|
\begin{figure}
|
|
\begin{minipage}{0.12\linewidth}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=\linewidth]{img/comparisons/plane.png}
|
|
\caption{planar scene}\label{fig:planar-scene}
|
|
\end{figure}
|
|
\end{minipage}
|
|
\hspace{2mm}
|
|
\begin{minipage}{0.12\linewidth}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=\linewidth]{img/comparisons/opendr.png}
|
|
\caption{OpenDR}\label{fig:grad-OpenDR}
|
|
\end{figure}
|
|
\end{minipage}
|
|
\hspace{2mm}
|
|
\begin{minipage}{0.12\linewidth}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=\linewidth]{img/comparisons/Neural.png}
|
|
\caption{Neural}\label{fig:grad-Neural3DMesh}
|
|
\end{figure}
|
|
\end{minipage}
|
|
\hspace{2mm}
|
|
\begin{minipage}{0.12\linewidth}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=\linewidth]{img/comparisons/ours.png}
|
|
\caption{this paper}\label{fig:grad-this}
|
|
\end{figure}
|
|
\end{minipage}
|
|
\hspace{4mm}
|
|
\begin{minipage}{0.3\linewidth}
|
|
\caption{
|
|
%A plane lit by a point light source. Images visualize a gradient with respect to the plane moving right. Since the light source remains static the gradient should only be $\ne 0$ at the boundaries. OpenDR and Neural are not able to correctly calculate the gradients as they are based on color buffer differences.\\
|
|
Visualizations of gradients calculated by different differentiable renderers.\\
|
|
Images:~\cite{ACM:diffable_raytracing}
|
|
}\label{fig:grad-explanation}
|
|
\end{minipage}
|
|
\end{figure}
|
|
\pause{}
|
|
$\implies$ Problems are caused at the edges and by approximation using color buffers
|
|
\end{frame} |