78 lines
No EOL
3 KiB
TeX
78 lines
No EOL
3 KiB
TeX
\section{Basic terms}
|
|
\begin{frame}
|
|
\centering
|
|
\Huge
|
|
Basic terms
|
|
\end{frame}
|
|
\subsection{Raytracing}
|
|
\begin{frame}{Raytracing}
|
|
\begin{center}
|
|
\begin{minipage}{0.4\linewidth}
|
|
\flushleft Turn 3D model...
|
|
\includegraphics[width=\linewidth]{presentation/img/proseminar_workbench.png}
|
|
\end{minipage}
|
|
\pause
|
|
$\rightarrow$
|
|
\hspace{10mm}
|
|
\begin{minipage}{0.4\linewidth}
|
|
\flushright ...into a physically accurate image
|
|
\includegraphics[width=0.8\linewidth]{presentation/img/proseminar_cycles.png}
|
|
\end{minipage}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Raytracing}
|
|
\begin{block}{Task}
|
|
\begin{itemize}
|
|
\item Determine the color of each Pixel in the scene
|
|
\item Color (light intensity) is given by the rendering integral:\\
|
|
\[
|
|
\underbrace{I(x,x^{\prime})}_{\text{Light transport intensity from }x \text{ to } x^{\prime}}=
|
|
\underbrace{g(x,x')}_{\text{geometry term}}
|
|
\left[
|
|
\underbrace{\epsilon(x,x')}_{\text{emissive light}}+\underbrace{\int_S \rho(x,x',x'')I(x',x'')dx''}_{\text{light scattered towards the point}}
|
|
\right]
|
|
\]
|
|
\begin{itemize}
|
|
\item Attempts to capture the physical light transport phenomenon in a single equation
|
|
\end{itemize}
|
|
[\cite{ACM:rendering_equation}]
|
|
\item Problem: This equation is not analytically solvable\\
|
|
$\rightarrow$ Solve numerically using Monte-Carlo integration (i.e. raytracing)
|
|
\end{itemize}
|
|
\end{block}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Raytracing}
|
|
\setbeamercovered{transparent}
|
|
\begin{block}{Principle (simplified)}
|
|
\begin{itemize}
|
|
\item Cast rays from the camera towards the scene
|
|
\item Calculate geometry intersection
|
|
\item Trace rays from intersection point to all light sources
|
|
\item Calculate color from emission and the sampled reflected light taking geometry into account (e.g. occlusion)
|
|
\item Have the ray "bounce around" to account for global illumination
|
|
\end{itemize}
|
|
\end{block}
|
|
\pause
|
|
\begin{block}{Variables}
|
|
Scene depends on lots of variables:
|
|
\begin{itemize}
|
|
\item Material properties (roughness, emission strength, color, transmissiveness...)
|
|
\item Vertex positions
|
|
\end{itemize}
|
|
\end{block}
|
|
\end{frame}
|
|
\begin{frame}{Image synthesis - optical phenomena}
|
|
\centering
|
|
\includegraphics[width=0.38\linewidth]{presentation/img/proseminar_cycles_annotated.png}
|
|
\end{frame}
|
|
|
|
\subsection{Differentiable rendering}
|
|
\begin{frame}{Differentiable rendering}
|
|
\begin{itemize}
|
|
\item Given: Function mapping an 3D-scene to a real number (e.g. error function)
|
|
\item Target: Calculate gradient of that function
|
|
\item Required: Differentiate with respect to any scene parameter
|
|
\end{itemize}
|
|
\end{frame} |