diff --git a/doc/Grundlagen_des_maschinellen_lernens.aux b/doc/Grundlagen_des_maschinellen_lernens.aux index e76d817..374d23b 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.aux +++ b/doc/Grundlagen_des_maschinellen_lernens.aux @@ -32,86 +32,93 @@ \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Regressionsprobleme}{4}{subsection.1.2}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Regression\relax }}{4}{figure.caption.3}\protected@file@percent } \newlabel{Regression}{{2}{4}{Regression\relax }{figure.caption.3}{}} +\abx@aux@cite{4} +\abx@aux@segm{0}{0}{4} +\abx@aux@cite{5} +\abx@aux@segm{0}{0}{5} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{5}{subsection.1.3}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Overfitting}{5}{subsubsection.1.3.1}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.2}Die Daten}{5}{subsubsection.1.3.2}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Overfitting\relax }}{6}{figure.caption.4}\protected@file@percent } +\newlabel{Overfitting}{{3}{6}{Overfitting\relax }{figure.caption.4}{}} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen Lernens}{6}{section.2}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{6}{subsection.2.1}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{6}{subsection.2.2}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{6}{subsection.2.3}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{6}{section.3}\protected@file@percent } \abx@aux@cite{2} \abx@aux@segm{0}{0}{2} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{5}{subsection.1.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Eignung der Datens\IeC {\"a}tze}{5}{subsubsection.1.3.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{5}{subsubsection.1.3.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.3}Unbewusste Manipulation der Daten}{5}{subsubsection.1.3.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen lernens}{5}{section.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{5}{subsection.2.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{5}{subsection.2.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{5}{subsection.2.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{5}{section.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{5}{subsection.3.1}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{6}{figure.caption.4}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{6}{subsection.3.2}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Ein einfaches neuronales Netz\relax }}{7}{figure.caption.5}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{7}{subsection.3.3}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{8}{figure.caption.6}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{9}{figure.caption.7}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{9}{subsection.3.4}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{7}{subsection.3.1}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{7}{figure.caption.5}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{8}{subsection.3.2}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Ein einfaches neuronales Netz\relax }}{8}{figure.caption.6}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{9}{subsection.3.3}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{9}{figure.caption.7}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{10}{figure.caption.8}\protected@file@percent } \abx@aux@cite{3} \abx@aux@segm{0}{0}{3} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{11}{subsection.3.4}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{11}{subsection.3.5}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{11}{subsubsection.3.5.1}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{11}{figure.caption.9}\protected@file@percent } +\newlabel{MSE_equation}{{8}{11}{Die Gleichung für den durchschnittlichen quadratischen Fehler\relax }{figure.caption.9}{}} \abx@aux@segm{0}{0}{3} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{10}{subsection.3.5}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{10}{subsubsection.3.5.1}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{10}{figure.caption.8}\protected@file@percent } -\newlabel{MSE_equation}{{7}{10}{Die Gleichung für den durchschnittlichen quadratischen Fehler\relax }{figure.caption.8}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{10}{subsubsection.3.5.2}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{10}{figure.caption.9}\protected@file@percent } -\newlabel{MAE_equation}{{8}{10}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.9}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{11}{subsubsection.3.5.3}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{11}{figure.caption.10}\protected@file@percent } -\newlabel{CEL_Graph}{{9}{11}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist\relax }{figure.caption.10}{}} -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{12}{figure.caption.11}\protected@file@percent } -\newlabel{CEL_Function}{{10}{12}{Die Gleichung für den Kreuzentropiefehler\relax }{figure.caption.11}{}} -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{12}{figure.caption.12}\protected@file@percent } -\newlabel{CEL_Finction_cummulative}{{11}{12}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.12}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{12}{subsection.3.6}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{12}{figure.caption.13}\protected@file@percent } -\newlabel{Gradient_Function}{{12}{12}{Die Gleichung für den Gradienten der Fehlerfunktion\relax }{figure.caption.13}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{13}{subsubsection.3.6.1}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{13}{figure.caption.14}\protected@file@percent } -\newlabel{Learning_Rate_Function}{{13}{13}{Die Gleichung für die Anpassung eines einzelnen Parameters\relax }{figure.caption.14}{}} -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{13}{figure.caption.15}\protected@file@percent } -\newlabel{Learning_Rate_Graphic}{{14}{13}{$\eta $ ist hier zu groß gewählt\relax }{figure.caption.15}{}} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{12}{subsubsection.3.5.2}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{12}{figure.caption.10}\protected@file@percent } +\newlabel{MAE_equation}{{9}{12}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.10}{}} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{12}{subsubsection.3.5.3}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{13}{figure.caption.11}\protected@file@percent } +\newlabel{CEL_Graph}{{10}{13}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist\relax }{figure.caption.11}{}} +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{13}{figure.caption.12}\protected@file@percent } +\newlabel{CEL_Function}{{11}{13}{Die Gleichung für den Kreuzentropiefehler\relax }{figure.caption.12}{}} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{13}{subsection.3.6}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{14}{figure.caption.13}\protected@file@percent } +\newlabel{CEL_Finction_cummulative}{{12}{14}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.13}{}} +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{14}{figure.caption.14}\protected@file@percent } +\newlabel{Gradient_Function}{{13}{14}{Die Gleichung für den Gradienten der Fehlerfunktion\relax }{figure.caption.14}{}} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{14}{subsubsection.3.6.1}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{14}{figure.caption.15}\protected@file@percent } +\newlabel{Learning_Rate_Function}{{14}{14}{Die Gleichung für die Anpassung eines einzelnen Parameters\relax }{figure.caption.15}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{14}{subsection.3.7}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{14}{subsubsection.3.7.1}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{14}{figure.caption.16}\protected@file@percent } -\newlabel{Convolution_illustration}{{15}{14}{Eine Verbildlichung der Vorgänge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md\\ Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}{figure.caption.16}{}} -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{15}{figure.caption.17}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{15}{figure.caption.17}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{15}{figure.caption.17}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{15}{figure.caption.17}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{15}{figure.caption.18}\protected@file@percent } -\newlabel{Filter_Example_raw}{{20}{15}{Das Beispielbild aus dem Mnist Datensatz\relax }{figure.caption.18}{}} -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{15}{figure.caption.19}\protected@file@percent } -\newlabel{Filter_output dargestellt}{{21}{15}{Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }{figure.caption.19}{}} -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{16}{figure.caption.20}\protected@file@percent } -\newlabel{HL_features_conv}{{22}{16}{Beispiele für low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}{figure.caption.20}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{16}{subsubsection.3.7.2}\protected@file@percent } -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{17}{figure.caption.21}\protected@file@percent } -\newlabel{Maxpool}{{23}{17}{Max Pooling mit $2\times 2$ großen Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling\\ CC BY NC SA Lizenz}{figure.caption.21}{}} -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{17}{figure.caption.22}\protected@file@percent } -\newlabel{AvgPool}{{24}{17}{Average Pooling mit $2\times 2$ großen Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}{figure.caption.22}{}} -\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{18}{figure.caption.23}\protected@file@percent } -\newlabel{Pooling_Mnist}{{25}{18}{Gegenüberstellung von Max und Average Pooling\relax }{figure.caption.23}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{19}{section.4}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{19}{subsection.4.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{19}{subsection.4.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{19}{subsection.4.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{19}{section.5}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{19}{subsection.5.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{19}{subsection.5.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{19}{subsection.5.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{19}{subsection.5.4}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{19}{section.6}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{19}{subsection.6.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{19}{subsection.6.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{19}{subsection.6.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{19}{subsection.6.4}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{19}{section.7}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{15}{figure.caption.16}\protected@file@percent } +\newlabel{Learning_Rate_Graphic}{{15}{15}{$\eta $ ist hier zu groß gewählt\relax }{figure.caption.16}{}} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{15}{subsubsection.3.7.1}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{16}{figure.caption.17}\protected@file@percent } +\newlabel{Convolution_illustration}{{16}{16}{Eine Verbildlichung der Vorgänge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md\\ Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}{figure.caption.17}{}} +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{17}{figure.caption.18}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{17}{figure.caption.18}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{17}{figure.caption.18}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{17}{figure.caption.18}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{17}{figure.caption.19}\protected@file@percent } +\newlabel{Filter_Example_raw}{{21}{17}{Das Beispielbild aus dem Mnist Datensatz\relax }{figure.caption.19}{}} +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{17}{figure.caption.20}\protected@file@percent } +\newlabel{Filter_output dargestellt}{{22}{17}{Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }{figure.caption.20}{}} +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{18}{figure.caption.21}\protected@file@percent } +\newlabel{HL_features_conv}{{23}{18}{Beispiele für low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}{figure.caption.21}{}} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{18}{subsubsection.3.7.2}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{19}{figure.caption.22}\protected@file@percent } +\newlabel{Maxpool}{{24}{19}{Max Pooling mit $2\times 2$ großen Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling\\ CC BY NC SA Lizenz}{figure.caption.22}{}} +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{19}{figure.caption.23}\protected@file@percent } +\newlabel{AvgPool}{{25}{19}{Average Pooling mit $2\times 2$ großen Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}{figure.caption.23}{}} +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{20}{figure.caption.24}\protected@file@percent } +\newlabel{Pooling_Mnist}{{26}{20}{Gegenüberstellung von Max und Average Pooling\relax }{figure.caption.24}{}} +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{21}{section.4}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{21}{subsection.4.1}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{21}{subsection.4.2}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{21}{subsection.4.3}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{21}{section.5}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{21}{subsection.5.1}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{21}{subsection.5.2}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{21}{subsection.5.3}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{21}{subsection.5.4}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{21}{section.6}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{21}{subsection.6.1}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{21}{subsection.6.2}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{21}{subsection.6.3}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{21}{subsection.6.4}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{21}{section.7}\protected@file@percent } \bibcite{1}{1} \bibcite{2}{2} \bibcite{3}{3} +\bibcite{4}{4} +\bibcite{5}{5} diff --git a/doc/Grundlagen_des_maschinellen_lernens.bcf b/doc/Grundlagen_des_maschinellen_lernens.bcf index 071c4d4..2fadead 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.bcf +++ b/doc/Grundlagen_des_maschinellen_lernens.bcf @@ -1995,9 +1995,11 @@ 1 - 2 - 3 - 3 + 4 + 5 + 2 + 3 + 3 diff --git a/doc/Grundlagen_des_maschinellen_lernens.lof b/doc/Grundlagen_des_maschinellen_lernens.lof index 0b7a51b..c430594 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.lof +++ b/doc/Grundlagen_des_maschinellen_lernens.lof @@ -5,48 +5,50 @@ \defcounter {refsection}{0}\relax \contentsline {figure}{\numberline {2}{\ignorespaces Regression\relax }}{4}{figure.caption.3}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {3}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{6}{figure.caption.4}% +\contentsline {figure}{\numberline {3}{\ignorespaces Overfitting\relax }}{6}{figure.caption.4}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {4}{\ignorespaces Ein einfaches neuronales Netz\relax }}{7}{figure.caption.5}% +\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{7}{figure.caption.5}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {5}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{8}{figure.caption.6}% +\contentsline {figure}{\numberline {5}{\ignorespaces Ein einfaches neuronales Netz\relax }}{8}{figure.caption.6}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {6}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{9}{figure.caption.7}% +\contentsline {figure}{\numberline {6}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{9}{figure.caption.7}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {7}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{10}{figure.caption.8}% +\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{10}{figure.caption.8}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{10}{figure.caption.9}% +\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{11}{figure.caption.9}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {9}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{11}{figure.caption.10}% +\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{12}{figure.caption.10}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{12}{figure.caption.11}% +\contentsline {figure}{\numberline {10}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{13}{figure.caption.11}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{12}{figure.caption.12}% +\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{13}{figure.caption.12}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{12}{figure.caption.13}% +\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{14}{figure.caption.13}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{13}{figure.caption.14}% +\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{14}{figure.caption.14}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {14}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{13}{figure.caption.15}% +\contentsline {figure}{\numberline {14}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{14}{figure.caption.15}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {15}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{14}{figure.caption.16}% +\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{15}{figure.caption.16}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{15}{figure.caption.17}% +\contentsline {figure}{\numberline {16}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{16}{figure.caption.17}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{15}{figure.caption.17}% +\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{17}{figure.caption.18}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{15}{figure.caption.17}% +\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{17}{figure.caption.18}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{15}{figure.caption.17}% +\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{17}{figure.caption.18}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {20}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{15}{figure.caption.18}% +\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{17}{figure.caption.18}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {21}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{15}{figure.caption.19}% +\contentsline {figure}{\numberline {21}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{17}{figure.caption.19}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {22}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{16}{figure.caption.20}% +\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{17}{figure.caption.20}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {23}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{17}{figure.caption.21}% +\contentsline {figure}{\numberline {23}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{18}{figure.caption.21}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {24}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{17}{figure.caption.22}% +\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{19}{figure.caption.22}% \defcounter {refsection}{0}\relax -\contentsline {figure}{\numberline {25}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{18}{figure.caption.23}% +\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{19}{figure.caption.23}% +\defcounter {refsection}{0}\relax +\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{20}{figure.caption.24}% diff --git a/doc/Grundlagen_des_maschinellen_lernens.log b/doc/Grundlagen_des_maschinellen_lernens.log index 16a80d3..693e2d7 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.log +++ b/doc/Grundlagen_des_maschinellen_lernens.log @@ -1,4 +1,4 @@ -This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 22 JAN 2020 13:06 +This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) (preloaded format=pdflatex 2020.1.22) 23 JAN 2020 16:37 entering extended mode restricted \write18 enabled. %&-line parsing enabled. @@ -283,10 +283,10 @@ LaTeX Info: Redefining \slshape on input line 33. LaTeX Info: Redefining \scshape on input line 37. )) (/usr/share/texlive/texmf-dist/tex/generic/babel/babel.sty -Package: babel 2018/11/13 3.27 The Babel package +Package: babel 2019/06/03 3.32 The Babel package (/usr/share/texlive/texmf-dist/tex/generic/babel/switch.def -File: switch.def 2018/11/13 3.27 Babel switching mechanism +File: switch.def 2019/06/03 3.32 Babel switching mechanism ) (/usr/share/texlive/texmf-dist/tex/generic/babel-german/ngerman.ldf Language: ngerman 2018/12/08 v2.11 German support for babel (post-1996 orthogra @@ -297,7 +297,7 @@ Language: ngermanb 2018/12/08 v2.11 German support for babel (post-1996 orthogr aphy) (/usr/share/texlive/texmf-dist/tex/generic/babel/babel.def -File: babel.def 2018/11/13 3.27 Babel common definitions +File: babel.def 2019/06/03 3.32 Babel common definitions \babel@savecnt=\count101 \U@D=\dimen112 @@ -307,7 +307,7 @@ File: babel.def 2018/11/13 3.27 Babel common definitions Package babel Info: Making " an active character on input line 121. ))) (/usr/share/texlive/texmf-dist/tex/latex/csquotes/csquotes.sty -Package: csquotes 2018/04/13 v5.2d context-sensitive quotations (JAW) +Package: csquotes 2019/05/10 v5.2e context-sensitive quotations (JAW) (/usr/share/texlive/texmf-dist/tex/latex/etoolbox/etoolbox.sty Package: etoolbox 2018/08/19 v2.5f e-TeX tools for LaTeX (JAW) @@ -322,7 +322,7 @@ Package: etoolbox 2018/08/19 v2.5f e-TeX tools for LaTeX (JAW) \csq@ltx@everypar=\toks23 (/usr/share/texlive/texmf-dist/tex/latex/csquotes/csquotes.def -File: csquotes.def 2018/04/13 v5.2d csquotes generic definitions (JAW) +File: csquotes.def 2019/05/10 v5.2e csquotes generic definitions (JAW) ) Package csquotes Info: Trying to load configuration file 'csquotes.cfg'... Package csquotes Info: ... configuration file loaded successfully. @@ -473,15 +473,15 @@ File: pdftex.def 2018/01/08 v1.0l Graphics/color driver for pdftex \lst@maxwidth=\dimen122 (/usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty -File: lstmisc.sty 2018/09/02 1.7 (Carsten Heinz) +File: lstmisc.sty 2019/02/27 1.8b (Carsten Heinz) \c@lstnumber=\count126 \lst@skipnumbers=\count127 \lst@framebox=\box30 ) (/usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg -File: listings.cfg 2018/09/02 1.7 listings configuration +File: listings.cfg 2019/02/27 1.8b listings configuration )) -Package: listings 2018/09/02 1.7 (Carsten Heinz) +Package: listings 2019/02/27 1.8b (Carsten Heinz) (/usr/share/texlive/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty Package: fancyhdr 2019/01/31 v3.10 Extensive control of page headers and footer @@ -728,14 +728,14 @@ Package: everyshi 2001/05/15 v3.00 EveryShipout Package (MS) )) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex) -Package: pgfrcs 2019/02/02 v3.1.1 (3.1.1) +Package: pgfrcs 2019/05/09 v3.1.3 (3.1.3) )) -Package: pgf 2019/02/02 v3.1.1 (3.1.1) +Package: pgf 2019/05/09 v3.1.3 (3.1.3) (/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty (/usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty (/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -Package: pgfsys 2019/02/02 v3.1.1 (3.1.1) +Package: pgfsys 2019/05/09 v3.1.3 (3.1.3) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex \pgfkeys@pathtoks=\toks26 @@ -753,6 +753,8 @@ ex \pgf@yb=\dimen130 \pgf@xc=\dimen131 \pgf@yc=\dimen132 +\pgf@xd=\dimen133 +\pgf@yd=\dimen134 \w@pgf@writea=\write4 \r@pgf@reada=\read2 \c@pgf@counta=\count316 @@ -764,26 +766,26 @@ ex \t@pgf@tokc=\toks31 \pgf@sys@id@count=\count320 (/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg -File: pgf.cfg 2019/02/02 v3.1.1 (3.1.1) +File: pgf.cfg 2019/05/09 v3.1.3 (3.1.3) ) Driver file for pgf: pgfsys-pdftex.def (/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def -File: pgfsys-pdftex.def 2019/02/02 v3.1.1 (3.1.1) +File: pgfsys-pdftex.def 2019/05/09 v3.1.3 (3.1.3) (/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.de f -File: pgfsys-common-pdf.def 2019/02/02 v3.1.1 (3.1.1) +File: pgfsys-common-pdf.def 2019/05/09 v3.1.3 (3.1.3) ))) (/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code. tex -File: pgfsyssoftpath.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfsyssoftpath.code.tex 2019/05/09 v3.1.3 (3.1.3) \pgfsyssoftpath@smallbuffer@items=\count321 \pgfsyssoftpath@bigbuffer@items=\count322 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code. tex -File: pgfsysprotocol.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfsysprotocol.code.tex 2019/05/09 v3.1.3 (3.1.3) )) (/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK) @@ -802,13 +804,13 @@ Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370. Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371. ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -Package: pgfcore 2019/02/02 v3.1.1 (3.1.1) +Package: pgfcore 2019/05/09 v3.1.3 (3.1.3) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex -\pgfmath@dimen=\dimen133 +\pgfmath@dimen=\dimen135 \pgfmath@count=\count323 \pgfmath@box=\box32 \pgfmath@toks=\toks32 @@ -835,39 +837,40 @@ thmetics.code.tex))) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex \c@pgfmathroundto@lastzeros=\count324 )) +(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.te x -File: pgfcorepoints.code.tex 2019/02/02 v3.1.1 (3.1.1) -\pgf@picminx=\dimen134 -\pgf@picmaxx=\dimen135 -\pgf@picminy=\dimen136 -\pgf@picmaxy=\dimen137 -\pgf@pathminx=\dimen138 -\pgf@pathmaxx=\dimen139 -\pgf@pathminy=\dimen140 -\pgf@pathmaxy=\dimen141 -\pgf@xx=\dimen142 -\pgf@xy=\dimen143 -\pgf@yx=\dimen144 -\pgf@yy=\dimen145 -\pgf@zx=\dimen146 -\pgf@zy=\dimen147 +File: pgfcorepoints.code.tex 2019/05/09 v3.1.3 (3.1.3) +\pgf@picminx=\dimen136 +\pgf@picmaxx=\dimen137 +\pgf@picminy=\dimen138 +\pgf@picmaxy=\dimen139 +\pgf@pathminx=\dimen140 +\pgf@pathmaxx=\dimen141 +\pgf@pathminy=\dimen142 +\pgf@pathmaxy=\dimen143 +\pgf@xx=\dimen144 +\pgf@xy=\dimen145 +\pgf@yx=\dimen146 +\pgf@yy=\dimen147 +\pgf@zx=\dimen148 +\pgf@zy=\dimen149 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct. code.tex -File: pgfcorepathconstruct.code.tex 2019/02/02 v3.1.1 (3.1.1) -\pgf@path@lastx=\dimen148 -\pgf@path@lasty=\dimen149 +File: pgfcorepathconstruct.code.tex 2019/05/09 v3.1.3 (3.1.3) +\pgf@path@lastx=\dimen150 +\pgf@path@lasty=\dimen151 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code .tex -File: pgfcorepathusage.code.tex 2019/02/02 v3.1.1 (3.1.1) -\pgf@shorten@end@additional=\dimen150 -\pgf@shorten@start@additional=\dimen151 +File: pgfcorepathusage.code.tex 2019/05/09 v3.1.3 (3.1.3) +\pgf@shorten@end@additional=\dimen152 +\pgf@shorten@start@additional=\dimen153 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.te x -File: pgfcorescopes.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcorescopes.code.tex 2019/05/09 v3.1.3 (3.1.3) \pgfpic=\box33 \pgf@hbox=\box34 \pgf@layerbox@main=\box35 @@ -875,133 +878,134 @@ File: pgfcorescopes.code.tex 2019/02/02 v3.1.1 (3.1.1) ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.c ode.tex -File: pgfcoregraphicstate.code.tex 2019/02/02 v3.1.1 (3.1.1) -\pgflinewidth=\dimen152 +File: pgfcoregraphicstate.code.tex 2019/05/09 v3.1.3 (3.1.3) +\pgflinewidth=\dimen154 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformation s.code.tex -File: pgfcoretransformations.code.tex 2019/02/02 v3.1.1 (3.1.1) -\pgf@pt@x=\dimen153 -\pgf@pt@y=\dimen154 -\pgf@pt@temp=\dimen155 +File: pgfcoretransformations.code.tex 2019/05/09 v3.1.3 (3.1.3) +\pgf@pt@x=\dimen155 +\pgf@pt@y=\dimen156 +\pgf@pt@temp=\dimen157 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex -File: pgfcorequick.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcorequick.code.tex 2019/05/09 v3.1.3 (3.1.3) ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.t ex -File: pgfcoreobjects.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcoreobjects.code.tex 2019/05/09 v3.1.3 (3.1.3) ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing .code.tex -File: pgfcorepathprocessing.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcorepathprocessing.code.tex 2019/05/09 v3.1.3 (3.1.3) ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.te x -File: pgfcorearrows.code.tex 2019/02/02 v3.1.1 (3.1.1) -\pgfarrowsep=\dimen156 +File: pgfcorearrows.code.tex 2019/05/09 v3.1.3 (3.1.3) +\pgfarrowsep=\dimen158 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex -File: pgfcoreshade.code.tex 2019/02/02 v3.1.1 (3.1.1) -\pgf@max=\dimen157 +File: pgfcoreshade.code.tex 2019/05/09 v3.1.3 (3.1.3) +\pgf@max=\dimen159 \pgf@sys@shading@range@num=\count326 +\pgf@shadingcount=\count327 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex -File: pgfcoreimage.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcoreimage.code.tex 2019/05/09 v3.1.3 (3.1.3) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code. tex -File: pgfcoreexternal.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcoreexternal.code.tex 2019/05/09 v3.1.3 (3.1.3) \pgfexternal@startupbox=\box36 )) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.te x -File: pgfcorelayers.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcorelayers.code.tex 2019/05/09 v3.1.3 (3.1.3) ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.c ode.tex -File: pgfcoretransparency.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcoretransparency.code.tex 2019/05/09 v3.1.3 (3.1.3) ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code. tex -File: pgfcorepatterns.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcorepatterns.code.tex 2019/05/09 v3.1.3 (3.1.3) ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex -File: pgfcorerdf.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfcorerdf.code.tex 2019/05/09 v3.1.3 (3.1.3) ))) (/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex -File: pgfmoduleshapes.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfmoduleshapes.code.tex 2019/05/09 v3.1.3 (3.1.3) \pgfnodeparttextbox=\box37 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex -File: pgfmoduleplot.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgfmoduleplot.code.tex 2019/05/09 v3.1.3 (3.1.3) ) (/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65 .sty -Package: pgfcomp-version-0-65 2019/02/02 v3.1.1 (3.1.1) -\pgf@nodesepstart=\dimen158 -\pgf@nodesepend=\dimen159 +Package: pgfcomp-version-0-65 2019/05/09 v3.1.3 (3.1.3) +\pgf@nodesepstart=\dimen160 +\pgf@nodesepend=\dimen161 ) (/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18 .sty -Package: pgfcomp-version-1-18 2019/02/02 v3.1.1 (3.1.1) +Package: pgfcomp-version-1-18 2019/05/09 v3.1.3 (3.1.3) )) (/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty (/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex)) (/usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex)) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -Package: pgffor 2019/02/02 v3.1.1 (3.1.1) +Package: pgffor 2019/05/09 v3.1.3 (3.1.3) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex) -\pgffor@iter=\dimen160 -\pgffor@skip=\dimen161 +\pgffor@iter=\dimen162 +\pgffor@skip=\dimen163 \pgffor@stack=\toks35 \pgffor@toks=\toks36 )) (/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex -Package: tikz 2019/02/02 v3.1.1 (3.1.1) +Package: tikz 2019/05/09 v3.1.3 (3.1.3) (/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers .code.tex -File: pgflibraryplothandlers.code.tex 2019/02/02 v3.1.1 (3.1.1) -\pgf@plot@mark@count=\count327 -\pgfplotmarksize=\dimen162 +File: pgflibraryplothandlers.code.tex 2019/05/09 v3.1.3 (3.1.3) +\pgf@plot@mark@count=\count328 +\pgfplotmarksize=\dimen164 ) -\tikz@lastx=\dimen163 -\tikz@lasty=\dimen164 -\tikz@lastxsaved=\dimen165 -\tikz@lastysaved=\dimen166 -\tikzleveldistance=\dimen167 -\tikzsiblingdistance=\dimen168 +\tikz@lastx=\dimen165 +\tikz@lasty=\dimen166 +\tikz@lastxsaved=\dimen167 +\tikz@lastysaved=\dimen168 +\tikzleveldistance=\dimen169 +\tikzsiblingdistance=\dimen170 \tikz@figbox=\box38 \tikz@figbox@bg=\box39 \tikz@tempbox=\box40 \tikz@tempbox@bg=\box41 -\tikztreelevel=\count328 -\tikznumberofchildren=\count329 -\tikznumberofcurrentchild=\count330 -\tikz@fig@count=\count331 +\tikztreelevel=\count329 +\tikznumberofchildren=\count330 +\tikznumberofcurrentchild=\count331 +\tikz@fig@count=\count332 (/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex -File: pgfmodulematrix.code.tex 2019/02/02 v3.1.1 (3.1.1) -\pgfmatrixcurrentrow=\count332 -\pgfmatrixcurrentcolumn=\count333 -\pgf@matrix@numberofcolumns=\count334 +File: pgfmodulematrix.code.tex 2019/05/09 v3.1.3 (3.1.3) +\pgfmatrixcurrentrow=\count333 +\pgfmatrixcurrentcolumn=\count334 +\pgf@matrix@numberofcolumns=\count335 ) -\tikz@expandcount=\count335 +\tikz@expandcount=\count336 (/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tik zlibrarytopaths.code.tex -File: tikzlibrarytopaths.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: tikzlibrarytopaths.code.tex 2019/05/09 v3.1.3 (3.1.3) ))) (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/pgfplots.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/pgfplotscore.code.tex \t@pgfplots@toka=\toks37 \t@pgfplots@tokb=\toks38 \t@pgfplots@tokc=\toks39 -\pgfplots@tmpa=\dimen169 -\c@pgfplots@coordindex=\count336 -\c@pgfplots@scanlineindex=\count337 +\pgfplots@tmpa=\dimen171 +\c@pgfplots@coordindex=\count337 +\c@pgfplots@scanlineindex=\count338 (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/sys/pgfplotssysgeneric.code .tex)) @@ -1017,7 +1021,7 @@ Package pgfplots: loading complementary arithmetics for your pgf version... gfsupp_pgflibraryfpu.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/oldpgfcompatib/pgfplotsoldp gfsupp_pgfmathfloat.code.tex -\c@pgfmathroundto@lastzeros=\count338 +\c@pgfmathroundto@lastzeros=\count339 )) (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/util/pgfplotsutil.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/liststructure/pgfplotslists @@ -1026,13 +1030,13 @@ tructure.code.tex) tructureext.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/liststructure/pgfplotsarray .code.tex -\c@pgfplotsarray@tmp=\count339 +\c@pgfplotsarray@tmp=\count340 ) (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/liststructure/pgfplotsmatri x.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/numtable/pgfplotstableshare d.code.tex -\c@pgfplotstable@counta=\count340 +\c@pgfplotstable@counta=\count341 \t@pgfplotstable@a=\toks40 ) (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/liststructure/pgfplotsdeque @@ -1045,7 +1049,7 @@ de.tex)) .tex) (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/libs/pgflibrarypgfplots.sur fshading.code.tex -\c@pgfplotslibrarysurf@no=\count341 +\c@pgfplotslibrarysurf@no=\count342 (/usr/share/texlive/texmf-dist/tex/generic/pgfplots/sys/pgflibrarypgfplots.surf shading.pgfsys-pdftex.def))) @@ -1072,14 +1076,14 @@ e.tex) zlibrarydecorations.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduledecorations.cod e.tex -\pgfdecoratedcompleteddistance=\dimen170 -\pgfdecoratedremainingdistance=\dimen171 -\pgfdecoratedinputsegmentcompleteddistance=\dimen172 -\pgfdecoratedinputsegmentremainingdistance=\dimen173 -\pgf@decorate@distancetomove=\dimen174 -\pgf@decorate@repeatstate=\count342 -\pgfdecorationsegmentamplitude=\dimen175 -\pgfdecorationsegmentlength=\dimen176 +\pgfdecoratedcompleteddistance=\dimen172 +\pgfdecoratedremainingdistance=\dimen173 +\pgfdecoratedinputsegmentcompleteddistance=\dimen174 +\pgfdecoratedinputsegmentremainingdistance=\dimen175 +\pgf@decorate@distancetomove=\dimen176 +\pgf@decorate@repeatstate=\count343 +\pgfdecorationsegmentamplitude=\dimen177 +\pgfdecorationsegmentlength=\dimen178 ) \tikz@lib@dec@box=\box42 ) @@ -1091,21 +1095,21 @@ decorations.pathmorphing.code.tex)) zlibrarydecorations.pathreplacing.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/decorations/pgflibrary decorations.pathreplacing.code.tex)) -\pgfplots@numplots=\count343 -\pgfplots@xmin@reg=\dimen177 -\pgfplots@xmax@reg=\dimen178 -\pgfplots@ymin@reg=\dimen179 -\pgfplots@ymax@reg=\dimen180 -\pgfplots@zmin@reg=\dimen181 -\pgfplots@zmax@reg=\dimen182 +\pgfplots@numplots=\count344 +\pgfplots@xmin@reg=\dimen179 +\pgfplots@xmax@reg=\dimen180 +\pgfplots@ymin@reg=\dimen181 +\pgfplots@ymax@reg=\dimen182 +\pgfplots@zmin@reg=\dimen183 +\pgfplots@zmax@reg=\dimen184 ) (/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tik zlibraryplotmarks.code.tex -File: tikzlibraryplotmarks.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: tikzlibraryplotmarks.code.tex 2019/05/09 v3.1.3 (3.1.3) (/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplotmarks.co de.tex -File: pgflibraryplotmarks.code.tex 2019/02/02 v3.1.1 (3.1.1) +File: pgflibraryplotmarks.code.tex 2019/05/09 v3.1.3 (3.1.3) ))) (/usr/share/texlive/texmf-dist/tex/latex/txfonts/txfonts.sty Package: txfonts 2008/01/22 v3.2.1 LaTeX Font Info: Redeclaring symbol font `operators' on input line 21. @@ -1188,16 +1192,16 @@ Package: caption 2018/10/06 v3.3-154 Customizing captions (AR) (/usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty Package: caption3 2018/09/12 v1.8c caption3 kernel (AR) Package caption3 Info: TeX engine: e-TeX on input line 64. -\captionmargin=\dimen183 -\captionmargin@=\dimen184 -\captionwidth=\dimen185 -\caption@tempdima=\dimen186 -\caption@indent=\dimen187 -\caption@parindent=\dimen188 -\caption@hangindent=\dimen189 +\captionmargin=\dimen185 +\captionmargin@=\dimen186 +\captionwidth=\dimen187 +\caption@tempdima=\dimen188 +\caption@indent=\dimen189 +\caption@parindent=\dimen190 +\caption@hangindent=\dimen191 ) -\c@caption@flags=\count344 -\c@ContinuedFloat=\count345 +\c@caption@flags=\count345 +\c@ContinuedFloat=\count346 Package caption Info: hyperref package is loaded. Package caption Info: listings package is loaded. ) @@ -1272,8 +1276,8 @@ LaTeX Font Info: Try loading font information for T1+txr on input line 30. (/usr/share/texlive/texmf-dist/tex/latex/txfonts/t1txr.fd File: t1txr.fd 2000/12/15 v3.1 ) -\c@mv@tabular=\count346 -\c@mv@boldtabular=\count347 +\c@mv@tabular=\count347 +\c@mv@boldtabular=\count348 \AtBeginShipoutBox=\box43 Package hyperref Info: Link coloring OFF on input line 30. @@ -1283,7 +1287,7 @@ Package: nameref 2016/05/21 v2.44 Cross-referencing by name of section (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty Package: gettitlestring 2016/05/16 v1.5 Cleanup title references (HO) ) -\c@section@level=\count348 +\c@section@level=\count349 ) LaTeX Info: Redefining \ref on input line 30. LaTeX Info: Redefining \pageref on input line 30. @@ -1297,16 +1301,16 @@ LaTeX Info: Redefining \nameref on input line 30. (/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii [Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count349 -\scratchdimen=\dimen190 +\scratchcounter=\count350 +\scratchdimen=\dimen192 \scratchbox=\box44 -\nofMPsegments=\count350 -\nofMParguments=\count351 +\nofMPsegments=\count351 +\nofMParguments=\count352 \everyMPshowfont=\toks41 -\MPscratchCnt=\count352 -\MPscratchDim=\dimen191 -\MPnumerator=\count353 -\makeMPintoPDFobject=\count354 +\MPscratchCnt=\count353 +\MPscratchDim=\dimen193 +\MPnumerator=\count354 +\makeMPintoPDFobject=\count355 \everyMPtoPDFconversion=\toks42 ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty Package: epstopdf-base 2016/05/15 v2.6 Base part for package epstopdf @@ -1325,7 +1329,7 @@ G,.JBIG2,.JB2,.eps] File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv e )) -\c@lstlisting=\count355 +\c@lstlisting=\count356 Package biblatex Info: Input encoding 'utf8' detected. Package biblatex Info: Automatic encoding selection. (biblatex) Assuming data encoding 'utf8'. @@ -1395,78 +1399,86 @@ ailable ut line 4. LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/b/n' will be (Font) scaled to size 10.0pt on input line 4. - -[1]) +) \tf@toc=\write6 \openout6 = `Grundlagen_des_maschinellen_lernens.toc'. - [2] +[1] [2] LaTeX Warning: Citation '1' on page 3 undefined on input line 43. -<../graphics/Classification.png, id=230, 467.5869pt x 464.6961pt> +<../graphics/Classification.png, id=225, 467.5869pt x 464.6961pt> File: ../graphics/Classification.png Graphic file (type png) Package pdftex.def Info: ../graphics/Classification.png used on input line 56. (pdftex.def) Requested size: 137.9979pt x 137.14088pt. [3] -<../graphics/Regression.png, id=237, 467.5869pt x 464.6961pt> +<../graphics/Regression.png, id=232, 467.5869pt x 464.6961pt> File: ../graphics/Regression.png Graphic file (type png) Package pdftex.def Info: ../graphics/Regression.png used on input line 66. (pdftex.def) Requested size: 137.9979pt x 137.14088pt. [4 <../graphics/classification.png> <../graphics/regression.png>] -<../graphics/Neuron.png, id=247, 299.9205pt x 158.994pt> -File: ../graphics/Neuron.png Graphic file (type png) - -Package pdftex.def Info: ../graphics/Neuron.png used on input line 87. -(pdftex.def) Requested size: 299.91975pt x 158.9936pt. +LaTeX Warning: Citation '4' on page 5 undefined on input line 74. -LaTeX Warning: Citation '2' on page 5 undefined on input line 93. - - -LaTeX Warning: `h' float specifier changed to `ht'. - -[5] -<../graphics/Neural_Net.png, id=253, 548.16795pt x 432.8973pt> -File: ../graphics/Neural_Net.png Graphic file (type png) - -Package pdftex.def Info: ../graphics/Neural_Net.png used on input line 98. -(pdftex.def) Requested size: 345.0pt x 272.45592pt. - -Underfull \hbox (badness 10000) in paragraph at lines 95--102 +<../graphics/overfitting.png, id=242, 467.5869pt x 529.0164pt> +File: ../graphics/overfitting.png Graphic file (type png) + +Package pdftex.def Info: ../graphics/overfitting.png used on input line 80. +(pdftex.def) Requested size: 207.0021pt x 234.1967pt. +Overfull \hbox (1.84744pt too wide) in paragraph at lines 77--87 +\T1/LinuxBiolinumT-TLF/m/n/10 Overfitting ist ein häu-fig auf-tre-ten-des Pro-b +lem bei Klas-si-fi-zie-rungs-auf-ga-ben. Die Klas- [] LaTeX Warning: `h' float specifier changed to `ht'. -[6 <../graphics/Neuron.png>] + +LaTeX Warning: Citation '5' on page 5 undefined on input line 88. + +[5] [6 <../graphics/overfitting.png>] +<../graphics/Neuron.png, id=255, 299.9205pt x 158.994pt> +File: ../graphics/Neuron.png Graphic file (type png) + +Package pdftex.def Info: ../graphics/Neuron.png used on input line 100. +(pdftex.def) Requested size: 299.91975pt x 158.9936pt. + + +LaTeX Warning: Citation '2' on page 7 undefined on input line 106. + +<../graphics/Neural_Net.png, id=256, 548.16795pt x 432.8973pt> +File: ../graphics/Neural_Net.png Graphic file (type png) + +Package pdftex.def Info: ../graphics/Neural_Net.png used on input line 111. +(pdftex.def) Requested size: 345.0pt x 272.45592pt. + +Underfull \hbox (badness 10000) in paragraph at lines 108--115 + + [] + +[7 <../graphics/Neuron.png>] [8 <../graphics/Neural_Net.png>] Missing character: There is no . in font nullfont! Missing character: There is no 0 in font nullfont! Missing character: There is no 1 in font nullfont! Missing character: There is no p in font nullfont! Missing character: There is no t in font nullfont! + [9] [10] +LaTeX Warning: Citation '3' on page 11 undefined on input line 219. -LaTeX Warning: `h' float specifier changed to `ht'. +[11] -[7 <../graphics/Neural_Net.png>] [8] [9] +LaTeX Warning: Citation '3' on page 12 undefined on input line 230. -LaTeX Warning: Citation '3' on page 10 undefined on input line 206. - - -LaTeX Warning: Citation '3' on page 10 undefined on input line 217. - -[10] Missing character: There is no . in font nullfont! Missing character: There is no 0 in font nullfont! Missing character: There is no 1 in font nullfont! Missing character: There is no p in font nullfont! Missing character: There is no t in font nullfont! - NOTE: coordinate (2Y5.0e0],3Y0.0e0]) has been dropped because it is unbounded ( in y). (see also unbounded coords=jump). NOTE: coordinate (2Y3.889e0],3Y0.0e0]) has been dropped because it is unbounded @@ -1480,210 +1492,235 @@ nded (in y). (see also unbounded coords=jump). LaTeX Warning: `h' float specifier changed to `ht'. -[11] -<../graphics/gdf_big_lr.png, id=310, 484.57034pt x 482.0409pt> + +LaTeX Warning: `h' float specifier changed to `ht'. + + +LaTeX Warning: `h' float specifier changed to `ht'. + +[12] + +LaTeX Warning: `h' float specifier changed to `ht'. + +<../graphics/gdf_big_lr.png, id=315, 484.57034pt x 482.0409pt> File: ../graphics/gdf_big_lr.png Graphic file (type png) -Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 291. +Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 304. (pdftex.def) Requested size: 172.5pt x 171.60013pt. - [12] [13 <../graphics/gdf_big_lr.png>] -<../graphics/conv/conv008.png, id=329, 396.48125pt x 450.68375pt> +[13] + +LaTeX Warning: `h' float specifier changed to `ht'. + +[14] +<../graphics/conv/conv008.png, id=331, 396.48125pt x 450.68375pt> File: ../graphics/conv/conv008.png Graphic file (type png) -Package pdftex.def Info: ../graphics/conv/conv008.png used on input line 309. +Package pdftex.def Info: ../graphics/conv/conv008.png used on input line 322. (pdftex.def) Requested size: 68.99895pt x 78.43071pt. - [14 <../graphics/conv/conv008.png>] -<../graphics/mnist_5/mnist_5_raw.png, id=339, 462.528pt x 346.896pt> + [15 <../graphics/gdf_big_lr.png>] [16 <../graphics/conv/conv008.png>] +<../graphics/mnist_5/mnist_5_raw.png, id=346, 462.528pt x 346.896pt> File: ../graphics/mnist_5/mnist_5_raw.png Graphic file (type png) Package pdftex.def Info: ../graphics/mnist_5/mnist_5_raw.png used on input lin -e 372. +e 385. (pdftex.def) Requested size: 172.5pt x 129.37639pt. -<../graphics/mnist_5/conv_only/mnist_5_upper_edges.png, id=340, 462.528pt x 346 +<../graphics/mnist_5/conv_only/mnist_5_upper_edges.png, id=347, 462.528pt x 346 .896pt> File: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Graphic file (type png) Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png - used on input line 381. + used on input line 394. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_only/mnist_5_left_edges.png, id=341, 462.528pt x 346. +<../graphics/mnist_5/conv_only/mnist_5_left_edges.png, id=348, 462.528pt x 346. 896pt> File: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Graphic file (type p ng) Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png -used on input line 386. +used on input line 399. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_only/mnist_5_lower_edges.png, id=342, 462.528pt x 346 +<../graphics/mnist_5/conv_only/mnist_5_lower_edges.png, id=349, 462.528pt x 346 .896pt> File: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Graphic file (type png) Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png - used on input line 391. + used on input line 404. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_only/mnist_5_right_edges.png, id=343, 462.528pt x 346 +<../graphics/mnist_5/conv_only/mnist_5_right_edges.png, id=350, 462.528pt x 346 .896pt> File: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Graphic file (type png) Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png - used on input line 396. + used on input line 409. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/features.png, id=346, 833.1125pt x 388.45125pt> +<../graphics/features.png, id=353, 833.1125pt x 388.45125pt> File: ../graphics/features.png Graphic file (type png) -Package pdftex.def Info: ../graphics/features.png used on input line 407. +Package pdftex.def Info: ../graphics/features.png used on input line 420. (pdftex.def) Requested size: 345.0pt x 160.86047pt. -Underfull \hbox (badness 10000) in paragraph at lines 318--414 +Underfull \hbox (badness 10000) in paragraph at lines 331--427 [] -[15 <../graphics/mnist_5/mnist_5_raw.png> <../graphics/mnist_5/conv_only/mnist_ +[17 <../graphics/mnist_5/mnist_5_raw.png> <../graphics/mnist_5/conv_only/mnist_ 5_upper_edges.png> <../graphics/mnist_5/conv_only/mnist_5_left_edges.png> <../g raphics/mnist_5/conv_only/mnist_5_lower_edges.png> <../graphics/mnist_5/conv_on -ly/mnist_5_right_edges.png>] [16 <../graphics/features.png>] -<../graphics/MaxpoolSample2.png, id=367, 164.25pt x 68.547pt> +ly/mnist_5_right_edges.png>] [18 <../graphics/features.png>] +<../graphics/MaxpoolSample2.png, id=375, 164.25pt x 68.547pt> File: ../graphics/MaxpoolSample2.png Graphic file (type png) -Package pdftex.def Info: ../graphics/MaxpoolSample2.png used on input line 425 +Package pdftex.def Info: ../graphics/MaxpoolSample2.png used on input line 438 . (pdftex.def) Requested size: 241.49895pt x 100.79422pt. -<../graphics/Average-Pooling-Example.png, id=368, 746.79pt x 337.26pt> +<../graphics/Average-Pooling-Example.png, id=376, 746.79pt x 337.26pt> File: ../graphics/Average-Pooling-Example.png Graphic file (type png) Package pdftex.def Info: ../graphics/Average-Pooling-Example.png used on input - line 433. + line 446. (pdftex.def) Requested size: 241.49895pt x 109.0627pt. File: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Graphic file (type png) Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png - used on input line 443. + used on input line 456. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. File: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Graphic file (type p ng) Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png -used on input line 448. +used on input line 461. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. File: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Graphic file (type png) Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png - used on input line 453. + used on input line 466. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. File: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Graphic file (type png) Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png - used on input line 458. + used on input line 471. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_pool/upper_horiz_pooled.png, id=370, 462.528pt x 346. +<../graphics/mnist_5/conv_pool/upper_horiz_pooled.png, id=378, 462.528pt x 346. 896pt> File: ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png Graphic file (type p ng) Package pdftex.def Info: ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png -used on input line 463. +used on input line 476. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_pool/left_vert_pooled.png, id=371, 462.528pt x 346.89 +<../graphics/mnist_5/conv_pool/left_vert_pooled.png, id=379, 462.528pt x 346.89 6pt> File: ../graphics/mnist_5/conv_pool/left_vert_pooled.png Graphic file (type png ) Package pdftex.def Info: ../graphics/mnist_5/conv_pool/left_vert_pooled.png us -ed on input line 468. +ed on input line 481. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_pool/lower_horiz_pooled.png, id=372, 462.528pt x 346. +<../graphics/mnist_5/conv_pool/lower_horiz_pooled.png, id=380, 462.528pt x 346. 896pt> File: ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png Graphic file (type p ng) Package pdftex.def Info: ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png -used on input line 473. +used on input line 486. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_pool/right_vert_pooled.png, id=373, 462.528pt x 346.8 +<../graphics/mnist_5/conv_pool/right_vert_pooled.png, id=381, 462.528pt x 346.8 96pt> File: ../graphics/mnist_5/conv_pool/right_vert_pooled.png Graphic file (type pn g) Package pdftex.def Info: ../graphics/mnist_5/conv_pool/right_vert_pooled.png u -sed on input line 478. +sed on input line 491. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png, id=374, 462.528pt x 3 +<../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png, id=382, 462.528pt x 3 46.896pt> File: ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png Graphic file (typ e png) Package pdftex.def Info: ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.pn -g used on input line 483. +g used on input line 496. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_pool/left_vert_avgpooled.png, id=375, 462.528pt x 346 +<../graphics/mnist_5/conv_pool/left_vert_avgpooled.png, id=383, 462.528pt x 346 .896pt> File: ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png Graphic file (type png) Package pdftex.def Info: ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png - used on input line 488. + used on input line 501. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png, id=376, 462.528pt x 3 +<../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png, id=384, 462.528pt x 3 46.896pt> File: ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png Graphic file (typ e png) Package pdftex.def Info: ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.pn -g used on input line 493. +g used on input line 506. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -<../graphics/mnist_5/conv_pool/right_vert_avgpooled.png, id=377, 462.528pt x 34 +<../graphics/mnist_5/conv_pool/right_vert_avgpooled.png, id=385, 462.528pt x 34 6.896pt> File: ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png Graphic file (type png) Package pdftex.def Info: ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png - used on input line 498. + used on input line 511. (pdftex.def) Requested size: 68.99895pt x 51.7463pt. -Underfull \hbox (badness 10000) in paragraph at lines 421--504 +Underfull \hbox (badness 10000) in paragraph at lines 434--517 [] -[17 <../graphics/MaxpoolSample2.png> <../graphics/Average-pooling-example.png>] +[19 <../graphics/MaxpoolSample2.png> <../graphics/Average-pooling-example.png>] Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `\newline' on input line 508. +(hyperref) removing `\newline' on input line 521. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `\newline' on input line 513. +(hyperref) removing `\newline' on input line 526. -[18 <../graphics/mnist_5/conv_pool/upper_horiz_pooled.png> <../graphics/mnist_5 +[20 <../graphics/mnist_5/conv_pool/upper_horiz_pooled.png> <../graphics/mnist_5 /conv_pool/left_vert_pooled.png> <../graphics/mnist_5/conv_pool/lower_horiz_poo led.png> <../graphics/mnist_5/conv_pool/right_vert_pooled.png> <../graphics/mni st_5/conv_pool/upper_horiz_avgpooled.png> <../graphics/mnist_5/conv_pool/left_v ert_avgpooled.png> <../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png> <. -./graphics/mnist_5/conv_pool/right_vert_avgpooled.png>] [19] -Underfull \hbox (badness 10000) in paragraph at lines 530--534 +./graphics/mnist_5/conv_pool/right_vert_avgpooled.png>] [21] +Underfull \hbox (badness 10000) in paragraph at lines 543--547 \T1/LinuxBiolinumT-TLF/m/n/10 Quelle: https://towardsdatascience.com/common-los s-functions-in-machine- [] -(./Grundlagen_des_maschinellen_lernens.lof -Overfull \hbox (21.8196pt too wide) in paragraph at lines 32--32 + +Underfull \hbox (badness 10000) in paragraph at lines 548--552 +\T1/LinuxBiolinumT-TLF/m/n/10 https://www.bloomberg.com/news/articles/2019-12-1 +1/face-recognition-tech- + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 553--557 +\T1/LinuxBiolinumT-TLF/m/n/10 https://www.technologyreview.com/f/614986/ai-face +-recognition-racist-us- + [] + +(./Grundlagen_des_maschinellen_lernens.lof [22] +Overfull \hbox (21.8196pt too wide) in paragraph at lines 34--34 \T1/LinuxBiolinumT-TLF/m/n/10 https://github.com/vdumoulin/conv_arithmetic/blo b/master/README.md [] -[20] -Overfull \hbox (5.42265pt too wide) in paragraph at lines 46--46 + +Overfull \hbox (5.42265pt too wide) in paragraph at lines 48--48 [][] [][]\T1/LinuxBiolinumT-TLF/m/n/10 Beispiele für low- mid- und high-level Fea-tu-res in Con-vo-lu-tio-nal Neural [] -Overfull \hbox (23.8891pt too wide) in paragraph at lines 48--48 +Overfull \hbox (23.8891pt too wide) in paragraph at lines 50--50 \T1/LinuxBiolinumT-TLF/m/n/10 Quelle: https://computersciencewiki.org/index.ph p/Max-pooling_/_Pooling [] @@ -1692,15 +1729,15 @@ p/Max-pooling_/_Pooling \tf@lof=\write7 \openout7 = `Grundlagen_des_maschinellen_lernens.lof'. - [21] -Package atveryend Info: Empty hook `BeforeClearDocument' on input line 537. -Package atveryend Info: Empty hook `AfterLastShipout' on input line 537. + [23] +Package atveryend Info: Empty hook `BeforeClearDocument' on input line 559. +Package atveryend Info: Empty hook `AfterLastShipout' on input line 559. (./Grundlagen_des_maschinellen_lernens.aux) -Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 537. -Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 537. +Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 559. +Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 559. Package rerunfilecheck Info: File `Grundlagen_des_maschinellen_lernens.out' has not changed. -(rerunfilecheck) Checksum: B310243FE389BD4A3D39E25B868838EA;2989. +(rerunfilecheck) Checksum: 0E54AACBB11CF153F035C5523DB10E3D;2880. LaTeX Warning: There were undefined references. @@ -1716,13 +1753,13 @@ un.xml'. ) Here is how much of TeX's memory you used: - 38421 strings out of 492615 - 857822 string characters out of 6131389 - 1382389 words of memory out of 5000000 - 41603 multiletter control sequences out of 15000+600000 + 38566 strings out of 492609 + 860436 string characters out of 6131462 + 1389284 words of memory out of 5000000 + 41748 multiletter control sequences out of 15000+600000 83070 words of font info for 118 fonts, out of 8000000 for 9000 1143 hyphenation exceptions out of 8191 - 62i,14n,100p,1509b,3444s stack positions out of 5000i,500n,10000p,200000b,80000s + 62i,14n,100p,1509b,3448s stack positions out of 5000i,500n,10000p,200000b,80000s {/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc}{/usr/share/texliv e/texmf-dist/fonts/enc/dvips/libertine/lbtn_25tcsq.enc} -Output written on Grundlagen_des_maschinellen_lernens.pdf (22 pages, 1288712 by +Output written on Grundlagen_des_maschinellen_lernens.pdf (24 pages, 1423323 by tes). PDF statistics: - 527 PDF objects out of 1000 (max. 8388607) - 444 compressed objects within 5 object streams - 104 named destinations out of 1000 (max. 500000) - 443 words of extra memory for PDF output out of 10000 (max. 10000000) + 537 PDF objects out of 1000 (max. 8388607) + 450 compressed objects within 5 object streams + 108 named destinations out of 1000 (max. 500000) + 440 words of extra memory for PDF output out of 10000 (max. 10000000) diff --git a/doc/Grundlagen_des_maschinellen_lernens.out b/doc/Grundlagen_des_maschinellen_lernens.out index 19ccdcd..7b602d6 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.out +++ b/doc/Grundlagen_des_maschinellen_lernens.out @@ -2,39 +2,38 @@ \BOOKMARK [2][-]{subsection.1.1}{Klassifizierungsprobleme}{section.1}% 2 \BOOKMARK [2][-]{subsection.1.2}{Regressionsprobleme}{section.1}% 3 \BOOKMARK [2][-]{subsection.1.3}{Gefahren von maschinellem Lernen}{section.1}% 4 -\BOOKMARK [3][-]{subsubsection.1.3.1}{Eignung der Datens\344tze}{subsection.1.3}% 5 -\BOOKMARK [3][-]{subsubsection.1.3.2}{Overfitting}{subsection.1.3}% 6 -\BOOKMARK [3][-]{subsubsection.1.3.3}{Unbewusste Manipulation der Daten}{subsection.1.3}% 7 -\BOOKMARK [1][-]{section.2}{Verschiedene Techniken maschinellen lernens}{}% 8 -\BOOKMARK [2][-]{subsection.2.1}{\334berwachtes Lernen}{section.2}% 9 -\BOOKMARK [2][-]{subsection.2.2}{Un\374berwachtes Lernen}{section.2}% 10 -\BOOKMARK [2][-]{subsection.2.3}{Best\344rkendes Lernen}{section.2}% 11 -\BOOKMARK [1][-]{section.3}{Neuronale Netze}{}% 12 -\BOOKMARK [2][-]{subsection.3.1}{Maschinelles Lernen und menschliches Lernen}{section.3}% 13 -\BOOKMARK [2][-]{subsection.3.2}{Der Aufbau eines neuronalen Netzes}{section.3}% 14 -\BOOKMARK [2][-]{subsection.3.3}{Berechnung des Ausgabevektors}{section.3}% 15 -\BOOKMARK [2][-]{subsection.3.4}{Der Lernprozess}{section.3}% 16 -\BOOKMARK [2][-]{subsection.3.5}{Fehlerfunktionen}{section.3}% 17 -\BOOKMARK [3][-]{subsubsection.3.5.1}{MSE \205 Durchschnittlicher quadratischer Fehler}{subsection.3.5}% 18 -\BOOKMARK [3][-]{subsubsection.3.5.2}{MAE \205 Durchschnitztlicher absoluter Fehler}{subsection.3.5}% 19 -\BOOKMARK [3][-]{subsubsection.3.5.3}{Kreuzentropiefehler}{subsection.3.5}% 20 -\BOOKMARK [2][-]{subsection.3.6}{Gradientenverfahren und Backpropagation}{section.3}% 21 -\BOOKMARK [3][-]{subsubsection.3.6.1}{Lernrate}{subsection.3.6}% 22 -\BOOKMARK [2][-]{subsection.3.7}{Verschiedene Layerarten}{section.3}% 23 -\BOOKMARK [3][-]{subsubsection.3.7.1}{Convolutional Layers}{subsection.3.7}% 24 -\BOOKMARK [3][-]{subsubsection.3.7.2}{Pooling Layers}{subsection.3.7}% 25 -\BOOKMARK [1][-]{section.4}{PyTorch}{}% 26 -\BOOKMARK [2][-]{subsection.4.1}{Datenvorbereitung}{section.4}% 27 -\BOOKMARK [2][-]{subsection.4.2}{Definieren des Netzes}{section.4}% 28 -\BOOKMARK [2][-]{subsection.4.3}{Trainieren des Netzes}{section.4}% 29 -\BOOKMARK [1][-]{section.5}{Fallbeispiel I:Ein Klassifizierungsnetzwerk f\374r handgeschriebene Ziffern}{}% 30 -\BOOKMARK [2][-]{subsection.5.1}{Aufgabe}{section.5}% 31 -\BOOKMARK [2][-]{subsection.5.2}{Der MNIST Datensatz}{section.5}% 32 -\BOOKMARK [2][-]{subsection.5.3}{Fragmentbasierte Erkennung}{section.5}% 33 -\BOOKMARK [2][-]{subsection.5.4}{Ergebnis}{section.5}% 34 -\BOOKMARK [1][-]{section.6}{Fallbeispiel II:Eine selbsttrainierende KI f\374r Tic-Tac-Toe}{}% 35 -\BOOKMARK [2][-]{subsection.6.1}{Das Prinzip}{section.6}% 36 -\BOOKMARK [2][-]{subsection.6.2}{Chance-Tree Optimierung}{section.6}% 37 -\BOOKMARK [2][-]{subsection.6.3}{L\366sung mittels eines neuronalen Netzes}{section.6}% 38 -\BOOKMARK [2][-]{subsection.6.4}{Vergleich}{section.6}% 39 -\BOOKMARK [1][-]{section.7}{Schlusswort}{}% 40 +\BOOKMARK [3][-]{subsubsection.1.3.1}{Overfitting}{subsection.1.3}% 5 +\BOOKMARK [3][-]{subsubsection.1.3.2}{Die Daten}{subsection.1.3}% 6 +\BOOKMARK [1][-]{section.2}{Verschiedene Techniken maschinellen Lernens}{}% 7 +\BOOKMARK [2][-]{subsection.2.1}{\334berwachtes Lernen}{section.2}% 8 +\BOOKMARK [2][-]{subsection.2.2}{Un\374berwachtes Lernen}{section.2}% 9 +\BOOKMARK [2][-]{subsection.2.3}{Best\344rkendes Lernen}{section.2}% 10 +\BOOKMARK [1][-]{section.3}{Neuronale Netze}{}% 11 +\BOOKMARK [2][-]{subsection.3.1}{Maschinelles Lernen und menschliches Lernen}{section.3}% 12 +\BOOKMARK [2][-]{subsection.3.2}{Der Aufbau eines neuronalen Netzes}{section.3}% 13 +\BOOKMARK [2][-]{subsection.3.3}{Berechnung des Ausgabevektors}{section.3}% 14 +\BOOKMARK [2][-]{subsection.3.4}{Der Lernprozess}{section.3}% 15 +\BOOKMARK [2][-]{subsection.3.5}{Fehlerfunktionen}{section.3}% 16 +\BOOKMARK [3][-]{subsubsection.3.5.1}{MSE \205 Durchschnittlicher quadratischer Fehler}{subsection.3.5}% 17 +\BOOKMARK [3][-]{subsubsection.3.5.2}{MAE \205 Durchschnitztlicher absoluter Fehler}{subsection.3.5}% 18 +\BOOKMARK [3][-]{subsubsection.3.5.3}{Kreuzentropiefehler}{subsection.3.5}% 19 +\BOOKMARK [2][-]{subsection.3.6}{Gradientenverfahren und Backpropagation}{section.3}% 20 +\BOOKMARK [3][-]{subsubsection.3.6.1}{Lernrate}{subsection.3.6}% 21 +\BOOKMARK [2][-]{subsection.3.7}{Verschiedene Layerarten}{section.3}% 22 +\BOOKMARK [3][-]{subsubsection.3.7.1}{Convolutional Layers}{subsection.3.7}% 23 +\BOOKMARK [3][-]{subsubsection.3.7.2}{Pooling Layers}{subsection.3.7}% 24 +\BOOKMARK [1][-]{section.4}{PyTorch}{}% 25 +\BOOKMARK [2][-]{subsection.4.1}{Datenvorbereitung}{section.4}% 26 +\BOOKMARK [2][-]{subsection.4.2}{Definieren des Netzes}{section.4}% 27 +\BOOKMARK [2][-]{subsection.4.3}{Trainieren des Netzes}{section.4}% 28 +\BOOKMARK [1][-]{section.5}{Fallbeispiel I:Ein Klassifizierungsnetzwerk f\374r handgeschriebene Ziffern}{}% 29 +\BOOKMARK [2][-]{subsection.5.1}{Aufgabe}{section.5}% 30 +\BOOKMARK [2][-]{subsection.5.2}{Der MNIST Datensatz}{section.5}% 31 +\BOOKMARK [2][-]{subsection.5.3}{Fragmentbasierte Erkennung}{section.5}% 32 +\BOOKMARK [2][-]{subsection.5.4}{Ergebnis}{section.5}% 33 +\BOOKMARK [1][-]{section.6}{Fallbeispiel II:Eine selbsttrainierende KI f\374r Tic-Tac-Toe}{}% 34 +\BOOKMARK [2][-]{subsection.6.1}{Das Prinzip}{section.6}% 35 +\BOOKMARK [2][-]{subsection.6.2}{Chance-Tree Optimierung}{section.6}% 36 +\BOOKMARK [2][-]{subsection.6.3}{L\366sung mittels eines neuronalen Netzes}{section.6}% 37 +\BOOKMARK [2][-]{subsection.6.4}{Vergleich}{section.6}% 38 +\BOOKMARK [1][-]{section.7}{Schlusswort}{}% 39 diff --git a/doc/Grundlagen_des_maschinellen_lernens.pdf b/doc/Grundlagen_des_maschinellen_lernens.pdf index ed184dc..a252055 100644 Binary files a/doc/Grundlagen_des_maschinellen_lernens.pdf and b/doc/Grundlagen_des_maschinellen_lernens.pdf differ diff --git a/doc/Grundlagen_des_maschinellen_lernens.synctex.gz b/doc/Grundlagen_des_maschinellen_lernens.synctex.gz index 346f6bb..7bd262e 100644 Binary files a/doc/Grundlagen_des_maschinellen_lernens.synctex.gz and b/doc/Grundlagen_des_maschinellen_lernens.synctex.gz differ diff --git a/doc/Grundlagen_des_maschinellen_lernens.tex b/doc/Grundlagen_des_maschinellen_lernens.tex index 9833df8..97913e0 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.tex +++ b/doc/Grundlagen_des_maschinellen_lernens.tex @@ -70,10 +70,23 @@ Als Regressionsproblem hingegen bezeichnet man das Finden einer Funktion, die ei \\ Die Kurve stellt hier Keine Grenze, sondern die Funktion, die die Werte approximiert, dar. Die Punkte repräsentieren die Eingabedaten, in denen auch hier einige Ausreißer erkennbar sind. \subsection{Gefahren von maschinellem Lernen} -\subsubsection{Eignung der Datensätze} +Maschinelles Lernen kann eine mächtige Technologie sein. Eine Vielzahl von Problemen lässt sich damit lösen, alle jedoch nicht. Man sollte sich bevor man maschinelles Lernen nutzt also Fragen: Lässt sich dieses Problem nicht einfacher auf konventionelle Weise lösen? Außerdem sollte man sich stets bewusst sein, dass maschinelles Lernen im Gegensatz zu den meißten Algorythmen, keine Technologie ist, die eine Treffsicherheit von 100\% aufweist. In Systemen, wo eine korrekte Antwort kritisch ist, sollte man also nicht alleine auf maschinelles Lernen setzen.\\ +Auch ist für maschinelles Lernen stets eine enorme Datenmenge nötig. Diese Daten müssen erst gesammelt werden. Hier stellt sich natürlich sofort eine ethische Frage: Welche Daten können guten Gewissens gesammelt und ausgewertret werden? Dabei sollte das Persönlichkeitsrecht und das Recht auf Privatsphäre eine zentrale Rolle spielen. Niemals sollte der Nutzen der Technologie über die Rechte der Nutzer gestellt werden. Betrachtet man hier beispielsweise den Flukhafen von Peking, sind erschreckende Tendenzen festzustellen. Dort wird beim Check-In via Gesichtserkennung die Identität der Person mit ihrem Gesicht verknüpft. Danach läuft alles vom Ticketkauf bis hin zum Duty-free-shop mit Hilfe von Gesichtserkennung ab \cite{4}.\\ +Die zentralen Gefahren maschinellen Lernens sind also die eventuelle Unsicherheit im Ergebnis, der hohe Trainingsaufwand, der gegebenenfalls mit klassischen Algorythmen vermieden werden kann und die Verletzung von Rechten durch das Auswerten persönlicher Daten. \subsubsection{Overfitting} -\subsubsection{Unbewusste Manipulation der Daten} -\section{Verschiedene Techniken maschinellen lernens} +Overfitting ist ein häufig auftretendes Problem bei Klassifizierungsaufgaben. Die Klassengrenzen werden dabei zu genau aber falsch definiert. In Abbildung \ref{Overfitting} ist dies dargestellt. +\begin{figure}[h] + \centering + \includegraphics[width=0.6\linewidth]{../graphics/overfitting.png} + \caption{Overfitting} + \label{Overfitting} +\end{figure} +\\ +Overfitting tritt auf, wenn man ein neuronales Netz zu lange auf einem Datensatz trainiert. Das Netz lernt dann die Daten auswendig, da es so einen Fehler von 0 erreichen kann. Dadurch wurden aber keine wirklichen Klassengrenzen erlernt.\\ +Um Overfitting entgegenzuwirken reicht es oftmals den Trainingsdatensatz in der Reihenfolge zu randomisieren. Dadurch kann das Netz diese gar nicht auswendig lernen. +\subsubsection{Die Daten} +Wie bereits erwähnt sind die Datensätze oft der limitierende Faktor beim maschinellen Lernen. Das gravierendste Problem ist, überhaupt einen passenden Datensatz für das Problem zu finden oder generieren zu können. Dabei muss man beachten, dass man in den alle für das Problem relevanten Faktoren berücksichtigt. Möchte man beispielsweise Gesichter jeglicher Art erkennen, genügt es nicht den Algorythmus auf einem Datensatz von Gesichtern hellhäutiger Menschen zu trainieren, da dieser zum Erkennen von Gesichtern dunkelhäuitiger Menschen dann nutzlos wäre. Dass dies kein theoretisches, sondern auch ein praktisch auftretendes Phänomen ist, zeigt eine Studie des National Institute for Standards and Technology (NIST)\cite{5}. Diese hat ergeben, dass beispielsweise ein in den USA entwickelter und dort sehr populärer Algorythmus eine extremn hohe Fehlerquote für afroamerikanische Frauen hat. Da dieses System unter anderem von der Polizei in den USA verwendet wird, haben afroamerikanische Frauen eine wesentlich höhere Chance fälschlicherweise einer Straftat beschuldigt zu werden. +\section{Verschiedene Techniken maschinellen Lernens} \subsection{Überwachtes Lernen} \subsection{Unüberwachtes Lernen} \subsection{Bestärkendes Lernen} @@ -531,7 +544,16 @@ Die Dimension der Submatritzen beträgt meißt $2\times2$. In Abbildung \ref{Poo Von Ravindra Parmar\newline Veröffentlicht am 02.09.2018, abgerufen am 07.01.2020\newline Quelle: https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23 - + \bibitem{4} + Facial Recognition Is Everywhere at China’s New Mega Airport\\ + Bloomberg, 11. Dezember 2019\\ + https://www.bloomberg.com/news/articles/2019-12-11/face-recognition-tech-is-everywhere-at-china-s-new-mega-airport\\ + Abgerufen am 23.01.2020 + \bibitem{5} + A US government study confirms most face recognition systems are racist\\ + 20.12.2019 MIT technology review\\ + https://www.technologyreview.com/f/614986/ai-face-recognition-racist-us-government-nist-study/\\ + Abgerufen am 23.01.2019 \end{thebibliography} \listoffigures \end{document} \ No newline at end of file diff --git a/doc/Grundlagen_des_maschinellen_lernens.toc b/doc/Grundlagen_des_maschinellen_lernens.toc index 55a3f88..81f24fc 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.toc +++ b/doc/Grundlagen_des_maschinellen_lernens.toc @@ -9,74 +9,72 @@ \defcounter {refsection}{0}\relax \contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{5}{subsection.1.3}% \defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {1.3.1}Eignung der Datens\IeC {\"a}tze}{5}{subsubsection.1.3.1}% +\contentsline {subsubsection}{\numberline {1.3.1}Overfitting}{5}{subsubsection.1.3.1}% \defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{5}{subsubsection.1.3.2}% +\contentsline {subsubsection}{\numberline {1.3.2}Die Daten}{5}{subsubsection.1.3.2}% \defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {1.3.3}Unbewusste Manipulation der Daten}{5}{subsubsection.1.3.3}% +\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen Lernens}{6}{section.2}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen lernens}{5}{section.2}% +\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{6}{subsection.2.1}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{5}{subsection.2.1}% +\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{6}{subsection.2.2}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{5}{subsection.2.2}% +\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{6}{subsection.2.3}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{5}{subsection.2.3}% +\contentsline {section}{\numberline {3}Neuronale Netze}{6}{section.3}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {3}Neuronale Netze}{5}{section.3}% +\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{7}{subsection.3.1}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{5}{subsection.3.1}% +\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{8}{subsection.3.2}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{6}{subsection.3.2}% +\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{9}{subsection.3.3}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{7}{subsection.3.3}% +\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{11}{subsection.3.4}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{9}{subsection.3.4}% +\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{11}{subsection.3.5}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{10}{subsection.3.5}% +\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{11}{subsubsection.3.5.1}% \defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{10}{subsubsection.3.5.1}% +\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{12}{subsubsection.3.5.2}% \defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{10}{subsubsection.3.5.2}% +\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{12}{subsubsection.3.5.3}% \defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{11}{subsubsection.3.5.3}% +\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{13}{subsection.3.6}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{12}{subsection.3.6}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{13}{subsubsection.3.6.1}% +\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{14}{subsubsection.3.6.1}% \defcounter {refsection}{0}\relax \contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{14}{subsection.3.7}% \defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{14}{subsubsection.3.7.1}% +\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{15}{subsubsection.3.7.1}% \defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{16}{subsubsection.3.7.2}% +\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{18}{subsubsection.3.7.2}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {4}PyTorch}{19}{section.4}% +\contentsline {section}{\numberline {4}PyTorch}{21}{section.4}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{19}{subsection.4.1}% +\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{21}{subsection.4.1}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{19}{subsection.4.2}% +\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{21}{subsection.4.2}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{19}{subsection.4.3}% +\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{21}{subsection.4.3}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{19}{section.5}% +\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{21}{section.5}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {5.1}Aufgabe}{19}{subsection.5.1}% +\contentsline {subsection}{\numberline {5.1}Aufgabe}{21}{subsection.5.1}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{19}{subsection.5.2}% +\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{21}{subsection.5.2}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{19}{subsection.5.3}% +\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{21}{subsection.5.3}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {5.4}Ergebnis}{19}{subsection.5.4}% +\contentsline {subsection}{\numberline {5.4}Ergebnis}{21}{subsection.5.4}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{19}{section.6}% +\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{21}{section.6}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {6.1}Das Prinzip}{19}{subsection.6.1}% +\contentsline {subsection}{\numberline {6.1}Das Prinzip}{21}{subsection.6.1}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{19}{subsection.6.2}% +\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{21}{subsection.6.2}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{19}{subsection.6.3}% +\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{21}{subsection.6.3}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {6.4}Vergleich}{19}{subsection.6.4}% +\contentsline {subsection}{\numberline {6.4}Vergleich}{21}{subsection.6.4}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {7}Schlusswort}{19}{section.7}% +\contentsline {section}{\numberline {7}Schlusswort}{21}{section.7}% diff --git a/graphics/overfitting.png b/graphics/overfitting.png new file mode 100644 index 0000000..4b3cadb Binary files /dev/null and b/graphics/overfitting.png differ diff --git a/graphics/overfitting.svg b/graphics/overfitting.svg index 271060c..b35b98d 100644 --- a/graphics/overfitting.svg +++ b/graphics/overfitting.svg @@ -15,7 +15,10 @@ version="1.1" id="svg8" sodipodi:docname="overfitting.svg" - inkscape:version="0.92.4 (f8dce91, 2019-08-02)"> + inkscape:version="0.92.4 (f8dce91, 2019-08-02)" + inkscape:export-filename="/home/clemens/repositorys/pytorch-ai/graphics/overfitting.png" + inkscape:export-xdpi="200" + inkscape:export-ydpi="200"> @@ -44,7 +47,7 @@ image/svg+xml - + @@ -299,7 +302,7 @@ r="2.5" /> + sodipodi:nodetypes="caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac" /> + + + Klassengrenze mit Overfitting + + Erwartete Klassengrenze