diff --git a/doc/Grundlagen_des_maschinellen_lernens.aux b/doc/Grundlagen_des_maschinellen_lernens.aux
index 982877e..4875f42 100644
--- a/doc/Grundlagen_des_maschinellen_lernens.aux
+++ b/doc/Grundlagen_des_maschinellen_lernens.aux
@@ -24,39 +24,65 @@
\babel@aux{ngerman}{}
\abx@aux@cite{1}
\abx@aux@segm{0}{0}{1}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Was ist maschinelles Lernen?}{4}{section.1}\protected@file@percent }
\abx@aux@cite{2}
\abx@aux@segm{0}{0}{2}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Was ist maschinelles Lernen?}{3}{section.1}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Einsatzgebiete maschinellen Lernens}{3}{subsection.1.1}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Neuronale Netze}{3}{section.2}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Maschinelles Lernen und menschliches Lernen}{3}{subsection.2.1}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{4}{figure.1}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Der Aufbau eines neuronalen Netzes}{4}{subsection.2.2}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz}}{5}{figure.2}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Berechnung des Ausgabevektors}{6}{subsection.2.3}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$}}{6}{figure.3}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. }}{7}{figure.4}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Der Lernprozess}{8}{subsection.2.4}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.4.1}Fehlerfunktionen}{9}{subsubsection.2.4.1}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.4.2}Gradientenverfahren}{9}{subsubsection.2.4.2}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.5}Verschiedene Layerarten}{9}{subsection.2.5}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.5.1}Fully connected Layers}{9}{subsubsection.2.5.1}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.5.2}Convolutional Layers}{9}{subsubsection.2.5.2}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.5.3}Pooling Layers}{9}{subsubsection.2.5.3}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}PyTorch}{9}{section.3}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Datenvorbereitung}{9}{subsection.3.1}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Definieren des Netzes}{9}{subsection.3.2}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Trainieren des Netzes}{9}{subsection.3.3}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{9}{section.4}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Aufgabe}{9}{subsection.4.1}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Der MNIST Datensatz}{9}{subsection.4.2}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Fragmentbasierte Erkennung}{9}{subsection.4.3}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Ergebnis}{9}{subsection.4.4}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{9}{section.5}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Das Prinzip}{9}{subsection.5.1}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Chance-Tree Optimierung}{9}{subsection.5.2}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{9}{subsection.5.3}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Vergleich}{9}{subsection.5.4}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Schlusswort}{9}{section.6}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{5}{subsection.1.1}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Regressionsprobleme}{5}{subsection.1.2}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{5}{subsection.1.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Eignung der Datens\IeC {\"a}tze}{5}{subsubsection.1.3.1}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{5}{subsubsection.1.3.2}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.3}Unbewusste Manipulation der Daten}{5}{subsubsection.1.3.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen lernens}{5}{section.2}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{5}{subsection.2.1}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{5}{subsection.2.2}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{5}{subsection.2.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{5}{section.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{5}{subsection.3.1}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{6}{figure.1}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{6}{subsection.3.2}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz}}{7}{figure.2}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{7}{subsection.3.3}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$}}{8}{figure.3}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. }}{9}{figure.4}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{9}{subsection.3.4}\protected@file@percent }
+\abx@aux@cite{3}
+\abx@aux@segm{0}{0}{3}
+\abx@aux@segm{0}{0}{3}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{10}{subsection.3.5}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{10}{subsubsection.3.5.1}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler}}{10}{figure.5}\protected@file@percent }
+\newlabel{MSE_equation}{{5}{10}{Die Gleichung für den durchschnittlichen quadratischen Fehler}{figure.5}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{10}{subsubsection.3.5.2}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{10}{figure.6}\protected@file@percent }
+\newlabel{MAE_equation}{{6}{10}{Die Gleichung für den durchschnittlichen absoluten Fehler}{figure.6}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{11}{subsubsection.3.5.3}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist}}{11}{figure.7}\protected@file@percent }
+\newlabel{CEL_Graph}{{7}{11}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist}{figure.7}{}}
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler}}{12}{figure.8}\protected@file@percent }
+\newlabel{CEL_Function}{{8}{12}{Die Gleichung für den Kreuzentropiefehler}{figure.8}{}}
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{12}{figure.9}\protected@file@percent }
+\newlabel{CEL_Finction_cummulative}{{9}{12}{Die Gleichung für den durchschnittlichen absoluten Fehler}{figure.9}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren}{13}{subsection.3.6}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{13}{subsection.3.7}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Fully connected Layers}{13}{subsubsection.3.7.1}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Convolutional Layers}{13}{subsubsection.3.7.2}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.3}Pooling Layers}{13}{subsubsection.3.7.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{13}{section.4}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{13}{subsection.4.1}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{13}{subsection.4.2}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{13}{subsection.4.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{13}{section.5}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{13}{subsection.5.1}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{13}{subsection.5.2}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{13}{subsection.5.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{13}{subsection.5.4}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{13}{section.6}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{13}{subsection.6.1}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{13}{subsection.6.2}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{13}{subsection.6.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{13}{subsection.6.4}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{13}{section.7}\protected@file@percent }
\bibcite{1}{1}
\bibcite{2}{2}
+\bibcite{3}{3}
diff --git a/doc/Grundlagen_des_maschinellen_lernens.bcf b/doc/Grundlagen_des_maschinellen_lernens.bcf
index 204fde0..071c4d4 100644
--- a/doc/Grundlagen_des_maschinellen_lernens.bcf
+++ b/doc/Grundlagen_des_maschinellen_lernens.bcf
@@ -1996,6 +1996,8 @@
1
2
+ 3
+ 3
diff --git a/doc/Grundlagen_des_maschinellen_lernens.lof b/doc/Grundlagen_des_maschinellen_lernens.lof
index 0ed7d95..92b1a65 100644
--- a/doc/Grundlagen_des_maschinellen_lernens.lof
+++ b/doc/Grundlagen_des_maschinellen_lernens.lof
@@ -1,10 +1,20 @@
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
\babel@toc {ngerman}{}
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{4}{figure.1}%
+\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{6}{figure.1}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz}}{5}{figure.2}%
+\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz}}{7}{figure.2}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$}}{6}{figure.3}%
+\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$}}{8}{figure.3}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. }}{7}{figure.4}%
+\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. }}{9}{figure.4}%
+\defcounter {refsection}{0}\relax
+\contentsline {figure}{\numberline {5}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler}}{10}{figure.5}%
+\defcounter {refsection}{0}\relax
+\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{10}{figure.6}%
+\defcounter {refsection}{0}\relax
+\contentsline {figure}{\numberline {7}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist}}{11}{figure.7}%
+\defcounter {refsection}{0}\relax
+\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler}}{12}{figure.8}%
+\defcounter {refsection}{0}\relax
+\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{12}{figure.9}%
diff --git a/doc/Grundlagen_des_maschinellen_lernens.log b/doc/Grundlagen_des_maschinellen_lernens.log
index f03113c..4804380 100644
--- a/doc/Grundlagen_des_maschinellen_lernens.log
+++ b/doc/Grundlagen_des_maschinellen_lernens.log
@@ -1,4 +1,4 @@
-This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 27 DEC 2019 20:06
+This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 7 JAN 2020 23:12
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
@@ -1372,62 +1372,10096 @@ ailable
ut line 4.
LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/b/n' will be
(Font) scaled to size 10.0pt on input line 4.
-)
+
+[2])
\tf@toc=\write6
\openout6 = `Grundlagen_des_maschinellen_lernens.toc'.
-[2]
+ [3]
-LaTeX Warning: Citation '1' on page 3 undefined on input line 37.
+LaTeX Warning: Citation '1' on page 4 undefined on input line 37.
-<../graphics/Neuron.png, id=165, 299.9205pt x 158.994pt>
+[4]
+<../graphics/Neuron.png, id=234, 299.9205pt x 158.994pt>
File: ../graphics/Neuron.png Graphic file (type png)